K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2019

Ta có:

A = 8/3x2y2.(-1/4x2y)

A = [8/3.(-1/4)].(x2.x2).(y2.y)

A = -2/3x4y3

Bậc : 7

22 tháng 5 2019

\(A=\frac{8}{3}x^2y^2.\left(-\frac{1}{4}x^2y\right)\)

\(A=\left(\frac{8}{3}.\frac{-1}{4}\right).\left(x^2..x^2\right).\left(y^2.y\right)\)

\(A=-\frac{2}{3}x^4y^3\)

Bậc của đơn thức là: 7

21 tháng 5 2019

a. Theo định lí Pitago:

Ta có: AB2 + AC2 = BC2

           42    + AC2 = 52

           16    + AC2 = 25

                      AC2 = 25 - 16

                      AC2 = 9

                       AC2 = 33

              =>       AC   = 3 (cm)

21 tháng 5 2019

A B C D E

Trả lời : Trong toán học, định lý Pytago (còn gọi là định lý Pythagoras theo tiếng Anh) là một liên hệ căn bản trong hình học Euclid giữa ba cạnh của một tam giác vuông. Định lý phát biểu rằng bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh còn lại.

\(\downarrow\)

21 tháng 5 2019

Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc vuông.

∆ABC vuông tại A.

=>  BC2=AB2+AC2

Học tốt

21 tháng 5 2019

Trả lời 

  1.Mình k bt.

   2.

        6 x 10 = 60

~ Hok tốt ~

AE trong team giúp mk 200 SP nha!Thanks~

21 tháng 5 2019

Trả lời 

  1.Mình k bt.

   2.

        6 x 10 = 60

~ Hok tốt ~

AE trong team RBL giúp mk 200 SP nha!Thanks

21 tháng 5 2019

( x1p - y1q )2n \(\ge\)0 ; ( x2p - y2q )2n \(\ge\)0 ; ... ; ( xmp - ymq )2n \(\ge\)0

vậy ( x1p - y1q )2n + ( x2p - y2q )2n  + ... + ( xmp - ymq )2n \(\ge\) 0

mà ( x1p - y1q )2n + ( x2p - y2q )2n  + ... + ( xmp - ymq )2n \(\le\)0

suy ra x1p - y1q = x2p - y2q = ... = xmp - ymq = 0

do đó : \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{p_m}=\frac{q}{p}\)hay \(\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)

21 tháng 5 2019

A B C G M P N

a) tg ABC đều 

mà G là trọng tâm
=> AG,CG,BG là dg pg
thì có các tg AGB, AGC,BGC cân

=> AG=CG=BG

b) tg APN cân tại A(tự cm)

mà góc A(lớn ) = 60độ

=> tg APN đều => góc ANP=góc ACB

=>PN//BC(...)

CMT vs các tg MNC,PMB

c)tg MNC=tgPMB=tg PNA(M,N,P lần lượt là tđ của BC,AC,AB)

=> MN=PM=PN

=> tg PMN đều

21 tháng 5 2019

Đặt \(\hept{\begin{cases}x^2+5=a^2\\x^2-5=b^2\end{cases}\Rightarrow x^2+5}-x^2+5=a^2-b^2\)

\(\Rightarrow a^2-b^2=10\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)=10\)

Vì \(\hept{\orbr{\begin{cases}\left(a-b\right)\left(a+b\right)⋮̸2\\\left(a-b\right)\left(a+b\right)⋮4\end{cases}}}\)(do a-b và a+b luôn có cùng số dư khi chia cho 2 )

Vậy không tìm đượcx thỏa mãn x^2+5 và x^2-5 là bình phương của các số hữu tỉ

22 tháng 5 2019

Vì  x2 + 5 và x2 - 5 đều là bình phương của các số hữu tỉ nên t x2 + 5 = a2 ;x2 - 5 = b2

Lập tích (x2 + 5).(x2 - 5 ) = x2 - 52 = a2 .b2

Ta có :

M + N = 6x2 + 3xy - 2y2  +  ( 3y2 - 2x2 - 3xy )

          = 6x2 + 3xy - 2y2 + 3y2 - 2x2  - 3xy 

          = 4x2  + y2 ( đoạn này mình làm hơi tắt sry nha)

Do 4x2  + y2  \(\ge\)

Suy ra : M + N \(\ge\) 0 <=>  M và N \(\ge\)0

Do đó  không tồn tại giá trị nào của x để 2 đa thức M và N có cùng giá trị âm

Đặt \(X=M+N=4x^2+y^2\)

Vì \(4x^2\ge0\forall x\)

\(y^2\ge0\forall x\)

\(X\ge0\forall x\)

Vậy...