Cho tam giác ABC . Trên tia đối của BC lấy điểm D sao cho BD=BA. Trên tia đối của CB lấy điểm E sao cho CE=CA.
Kẻ BD vuông góc với AD, CK vuông góc với AE.
Chứng minh rằng : a) AH = HD
b) HK song song với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E nằm giữa D và C \(\Rightarrow ED+EC=DC\)
\(\Rightarrow\frac{1}{3}CD+EC=CD\Rightarrow EC=\frac{2}{3}CD\)
O là giao điểm 2 đường chéo của hình bình hành ABCD (gt) nên O là trung điểm của AC.
\(\Delta AEC\) có: O là trung điểm của AC (cmt) và \(OF//AE\left(gt\right)\)
Do đó: F là trung điểm của CE \(\Rightarrow EF=FC=\frac{1}{2}EC=\frac{1}{2}.\frac{2}{3}CD=\frac{1}{3}CD\)
Vậy \(DE=EF=FC\left(=\frac{1}{3}CD\right)\)
Chúc bạn học tốt.
Gọi giao điểm của AF và DC là I.
\(\widehat{A}=\widehat{D}=90^0\Rightarrow AB//CD\Rightarrow\hept{\begin{cases}\widehat{ABF}=\widehat{ICF}\\\widehat{BAF}=\widehat{I}\left(1\right)\end{cases}\left(SLT\right)}\)
\(\Delta ABF=\Delta ICF\left(g.c.g\right)\Rightarrow AF=IF\)mà \(F\in AI\Rightarrow\) F là trung điểm của AI
Tam giác ADI vuông tại D có DF là đường trung tuyến ứng với cạnh huyền AI
\(\Rightarrow DF=\frac{1}{2}AI\Rightarrow DF=IF\Rightarrow\Delta IDF\)cân tại F \(\Rightarrow\widehat{FDC}=\widehat{I}\left(2\right)\) (t/c)
Từ (1) và (2), \(\widehat{BAF}=\widehat{CDF}\)
Chúc bạn học tốt.
Em tham khảo tại đây nhé:
Câu hỏi của Nguyễn Chí Thành - Toán lớp 8 - Học toán với OnlineMath
Hình bạn tự vẽ nha.
a, \(\Delta ABD\)có: \(BD=BA\left(gt\right)\Rightarrow\Delta ABD\)cân tại B mà HB là đường cao của \(\Delta ABD\Rightarrow\)HB là phân giác của \(\widehat{ABD}\Rightarrow\widehat{ABH}=\widehat{HBD}\)
Xét \(\Delta AHB\)và \(\Delta DHB\)có:
HB chung
\(\widehat{ABH}=\widehat{HBD}\left(cmt\right)\)
\(\widehat{AHB}=\widehat{BHD}=90^o\)
\(\Rightarrow\Delta AHB=\Delta DHB\left(g-c-g\right)\Rightarrow AH=DH\)
b, Chứng minh tương tự câu a ta có: \(\Delta ACK=\Delta ECK\left(g-c-g\right)\Rightarrow AK=EK\)
\(\Delta ADE\)có: \(AH=HD\left(cmt\right)\)
\(AK=EK\left(cmt\right)\)
\(\Rightarrow\)HK là đường trung bình của \(\Delta ADE\)\(\Rightarrow HK//DE\Leftrightarrow HK//BC\)