Cho tam giác ABC cân tại A, M là trung điểm của BC. trên AB lấy điểm D, trên cạnh AC lấy điểm E sao cho DM là tia phân giác của góc BDE. CMR
a, EM là tia phân giác của góc CED
b,Tam giác BDM đồng dạng với tam giác CME
c, BD.CE = a2 (đặt MB=MC=a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+x^2+4=x^3+2x^2-x^2-2x+2x+4\)
\(=x^2\left(x+2\right)-x\left(x+2\right)+2\left(x+2\right)\)
\(=\left(x^2-x+2\right)\left(x+2\right)\)
\(x^8+64=x^8+16x^4+64-16x^4\)
\(=\left(x^4+8\right)^2-\left(4x^2\right)^2\)
\(=\left(x^4-4x^2+8\right)\left(x^4+4x^2+8\right)\)
\(4a^4+b^4=4a^4+4a^2b^2+b^4-4a^2b^2\)
\(=\left(2a^2+b^2\right)^2-\left(2ab\right)^2\)
\(=\left(2a^2+b^2-2ab\right)\left(2a^2+b^2+2ab\right)\)
\(x^3-2x-4=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x^2+2x+2\right)\left(x-2\right)\)
Chúc bạn học tốt.