Cho hình bình hành ABCD. Vẽ ra phía ngoài các tam giác ABM vuông cân tại A, tam giác CBN vuông cân tại C. Chứng minh rằng: tam giác DMN vuông cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(\Delta\)ABC có hai đường trung tuyến BE và CF vuông góc với nhau, AD là đường trung tuyến thứ ba. Ta cần chứng minh AD^2 = BE^2 + CF^2
Trên tia đối của tia EF lấy điểm K sao cho EF = FK
Tứ giác AKCF có hai đường chéo cắt nhau tại trung điểm E của mỗi đường nên AKCF là hình bình hành => AK//FC. Mà FC\(\perp\)BE nên BE\(\perp\)AK (*)
Ta có: F là trung điểm của AB, E là trung điểm của AC nên EF là đường trung bình của\(\Delta\)ABC => EF = 1/2BC và EF//BC hay EK//BD (1)
Mà BD = 1/2BC (gt) nên EF = BD => EK = BD (do EF = EK theo cách chọn điểm phụ) (2)
Từ (1) và (2) suy ra EKDB là hình bình hành => EB // DK (**)
Từ (*) và (**) suy ra DK \(\perp\)AK => \(\Delta\)AKD vuông tại K => AK^2 + KD^2 = AD^2 (theo định lý Py-ta-go)
Mà AK = FC (do AKCF là hình bình hành) và KD = BE (do EKDB là hình bình hành) nên AD^2 = BE^2 + CF^2 (đpcm)
Cho abc=0 thì không chứng minh được, a+b+c=0 là đủ rồi
Ta có: a+b+c=0 => a+b=-c
=>(a+b)2=(-c)2
=>a2+2ab+b2=c2
=>a2+b2-c2=-2ab
Tương tự ta có: b2+c2-a2=-2bc ; c2+a2-b2=-2ca
=>\(\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=\frac{a+b+c}{-2abc}=0\) (đpcm)
Cho \(abc=0\)thì không chứng minh được, \(a+b+c=0\)là đủ rồi.
Ta có: \(a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)
\(\Rightarrow a^2+2ab+b^2=c^2\)
\(\Rightarrow a^2+b^2-c^2=-2ab\)
Tương tự ta có: \(b^2+c^2-a^2=-2ab;c^2+a^2-b^2=-2ca\)
\(\Rightarrow\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=\frac{a+b+c}{-2abc}=0\)
\(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
\(\Rightarrow\text{ }\left(2x-1\right)-\left(x+3\right)=0\)
\(\Rightarrow\text{ }2x-1-x-3=0\)
\(\Rightarrow\text{ }\left(2-1\right)\cdot x-\left(1+3\right)=0\)
\(\Rightarrow\text{ }1\cdot x-4=0\)
\(\Rightarrow\text{ }1\cdot x=0+4\)
\(\Rightarrow\text{ }1\cdot x=4\)
\(\Rightarrow\text{ }\text{ }x=4\)
\(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
\(\left(2x-1-x-3\right).\left(2x-1+x+3\right)=0\)
\(\left(x-4\right).\left(3x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-\frac{2}{3}\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=4\\x=-\frac{2}{3}\end{cases}}\)
Áp dụng đường trung bình là xong
a, Hình thang ABCD có: \(AM=MD\left(gt\right)\)
\(AN=NC\left(gt\right)\)
\(\Rightarrow\)MN là đường trung bình của hình thang ABCD \(\Rightarrow\hept{\begin{cases}MN//AB//CD\\MN=\frac{AB+CD}{2}\end{cases}\Leftrightarrow6=\frac{AB+8}{2}\Leftrightarrow AB=4\left(cm\right)}\)
b, \(\Delta ABD\)có: \(MP//AB\left(cmt\right)\)
\(AM=MD\left(gt\right)\)
\(\Rightarrow DP=PB\)
\(\Delta ABD\)có: \(AM=MD\left(gt\right)\)
\(DP=PB\left(cmt\right)\)
\(\Rightarrow\)MP là đường trung bình của \(\Delta ABD\Rightarrow MP=\frac{1}{2}AB\Leftrightarrow MP=\frac{1}{2}.4=2\left(cm\right)\)
Chứng minh tương tự ta có: \(QN=2\left(cm\right)\)
Ta có: \(MP+PQ+QN=MN\Leftrightarrow2+PQ+2=6\Leftrightarrow PQ=2\left(cm\right)\)
Cơ mà thấy câu b cứ thấy nó cứ sao sao á, nếu sai thì báo nhá.
Vi tam giac AMB can tai A nen AM=AB ma AB=DC ( ABCD la hbh ) suy ra AM=AB=CD
tuong tu BC=CN=AD
Ta co DM=AD+AM
DN=DC+CN
Ma AD=CN va AM=CD nen DM=DN suy ra tam giac DMN can tai D (dpcm)