Cho tam giác ABC vuông tại A đường cao AH (H \(E\) BC ) Đường tròn AH cắt hai cạnh AB và AC theo thứ tự M và N
a) Chứng minh AMHN là hình chữ nhật .
b) Chứng minh BMNC là tam giác nội tiếp .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A là số nguyên khi
4n - 2 ⋮ n - 2
=> 4n - 8 + 6 ⋮ n - 2
=> 4(n - 2) + 6 ⋮ n - 2
=> 6 ⋮ n - 2
\(A=4n-2⋮n-2\)
\(\Rightarrow4n-8+6⋮n-2\)
\(\Rightarrow4(n-2)+6⋮n-2\)
Mà \(n-2⋮n-2\Rightarrow6⋮n-2\)
\(\Rightarrow n-2\inƯ(6)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Đến đây dễ tìm
https://olm.vn/hoi-dap/tim-kiem?q=cho+tam+gi%C3%A1c+ABC+c%C3%A2n+t%E1%BA%A1i+A,+tr%C3%AAn+c%E1%BA%A1nh+Ab+l%E1%BA%A5y+%C4%91i%E1%BB%83m+d+Tren+Ac+l%E1%BA%A5y+di%E1%BB%83m+E+sao+cho+AD=AE.+G%E1%BB%8Di+M+l%C3%A0+giao+%C4%91i%E1%BB%83m+BE+v%C3%A0+CD+CMR+:+a,+BE=CD+b,+tam+gi%C3%A1c+BMD+=+TAM+GI%C3%81C+CME+C,+AM+l%C3%A0+ph%C3%A2n+gi%C3%A1c+BAC+gi%E1%BA%A3i+gi%C3%BAp+mik+v%E1%BB%9Bi+...+k%E1%BA%BB+giao+%C4%91i%E1%BB%83m+nh%C6%B0+th%E1%BA%BF+n%C3%A0o+v%E1%BA%ADy+?&id=364664
Cm: a) Xét t/giác ADC và t/giác AEB
có: AC = AB (gt)
góc A : chung
AD = AE (gt)
=> t/giác ADC = t/giác AEB (c.g.c)
=> DC = BE (hai cạnh tương ứng)
b) Ta có: AD + DB = AB
AE + EC = AC
Mà AB = AC (gt); AD = AE (gt)
=> DB = EC
Ta lại có:
góc BDC là góc ngoài của t/giác ADC
=> góc BDC = góc A + góc ACD
góc BEC là góc ngoài của t/giác ABE
=> góc BEC = góc A + góc ABE
Mà góc ACD = góc ABE
=> góc BDC = góc BEC hay góc BDK = góc KEC
Xét t/giác KBD và t/giá KCE
có góc DBK = góc ECK (vì t/giác ABE = t/giác ACD)
BD = EC (cmt)
góc BDK = góc EKC (cmt)
=> t/giác KBD = t/giác KCE
c) Xét t/giác ABK và t/giác ACK
có AB = AC (gt)
AK : chung
BK = CK (vì t/giác KBD = t/giác KCE)
=> t/giác ABK = t/giác ACK (c.c.c)
=> góc BAK = góc CAK (hai góc tương ứng)
=> AK là tia p/giác của góc A
d) Ta có: AD = AE (gt)
=> A thuộc đường trung trực của DE
DK = KE (vì t/giác KBD = t/giác KCE)
=> K thuộc đường trung trực của DE
DO A khác K => AK là đường trung trực của DE
e) Ta có: AD = AE
=> t/giác ADE cân tại A
=> góc ADE = góc AED = \(\frac{180^0-\widehat{A}}{2}\) (1)
Ta lại có: t/giác ABC cân tại A
=> góc B = góc C = \(\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) => góc ADE = góc B
Mà góc ADE và góc B ở vị trí đồng vị
=> AE // BC (Đpcm)
3x + 2 - 3x = 24
=> 3x.9 - 3x = 24
=> 3x(9 - 1) = 24
=> 3x.8 = 24
=> 3x = 24 : 8
=> 3x = 31
=> x = 1
\(3^{x+2}-3^x=24\)
\(3^x.3^2-3^x=24\)
\(3^x\left(3^2-1\right)=24\)
\(3^x.8=24\)
\(3^x=24:8=3\)
\(\Rightarrow x=1\)
\(\left(x-\frac{1}{2}\right)\left(x+\frac{3}{4}\right)>0\)
th1 :
\(\hept{\begin{cases}x-\frac{1}{2}>0\\x+\frac{3}{4}>0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>-\frac{3}{4}\end{cases}\Rightarrow}x>\frac{1}{2}}\)
th2 :
\(\hept{\begin{cases}x-\frac{1}{2}< 0\\x+\frac{3}{4}< 0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< -\frac{3}{4}\end{cases}\Rightarrow}x< -\frac{3}{4}}\)
\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)
\(=33+11+3+1\)
\(=48\)
\(\frac{100}{3}+\frac{100}{3^2}+\frac{100}{3^3}+\frac{100}{3^4}\)
\(=\frac{100.3^3}{3^4}+\frac{100.3^2}{3^4}+\frac{100.3}{3^4}+\frac{100}{3^4}\)
\(=\frac{100.3^3+100.3^2+100.3+100}{3^4}\)
\(=\frac{100.\left(3^3+3^2+3+1\right)}{3^4}\)
\(=\frac{100.\left(27+9+3+1\right)}{81}\)
\(=\frac{100.40}{81}\)
\(=\frac{4000}{81}\)
Hình vẽ:
Lời giải:
a)
HM⊥AB;HN⊥AC⇒HMAˆ=HNAˆ=900HM⊥AB;HN⊥AC⇒HMA^=HNA^=900
Xét tứ giác AMHNAMHN có tổng 2 góc đối HMAˆ+HNAˆ=900+900=1800HMA^+HNA^=900+900=1800 nên AMHNAMHN là tứ giác nội tiếp (đpcm)
b)
Vì AMHNAMHN nội tiếp ⇒AMNˆ=AHNˆ⇒AMN^=AHN^
Mà AHNˆ=ACBˆ(=900−NHCˆ)AHN^=ACB^(=900−NHC^)
⇒AMNˆ=ACBˆ⇒AMN^=ACB^
Xét tam giác AMNAMN và ACBACB có:
{Aˆ−chungAMNˆ=ACBˆ(cmt)⇒△AMN∼△ACB(g.g){A^−chungAMN^=ACB^(cmt)⇒△AMN∼△ACB(g.g)
⇒AMAC=ANAB⇒AM.AB=AC.AN⇒AMAC=ANAB⇒AM.AB=AC.AN (đpcm)
c)
Ta có: ACBˆ=AEBˆACB^=AEB^ (góc nội tiếp chắn cung ABAB)
ACBˆ=AMNˆACB^=AMN^ (cmt)
⇒AEBˆ=AMNˆ⇒AEB^=AMN^
⇔IEBˆ=1800−BMIˆ⇔IEB^=1800−BMI^
⇔IEBˆ+BMIˆ=1800⇔IEB^+BMI^=1800, do đó tứ giác BMIEBMIE nội tiếp
⇒MIEˆ=1800−MBEˆ=1800−900=900⇒MIE^=1800−MBE^=1800−900=900 (MBEˆ=ABEˆ=900MBE^=ABE^=900 vì là góc nt chắn nửa đường tròn)
⇒MN⊥AE⇒MN⊥AE . Ta có đpcm.
~Hok tốt~