dùng phần bù đến đơn vị để so sánh các phân số
a) 2/3,3/4,4/5x5/6 b)61/69 và 85/93 c)11/17 và 113/173
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng phần bù đến đơn vị để so sánh các phân số
a) 2/3,3/4,4/5x5/6 b)61/69 và 85/93 c)11/17 và 113/173
Câu hỏi của Lê Hà Phương - Toán lớp 7 - Học toán với OnlineMath
Link nek : https://olm.vn/hoi-dap/detail/12943716132.html
thử sức thôi nha ( sai đành thôi nha )
giải
Gọi a là số tự nhiên chẵn , ta có tổng của 2004 số tự nhiên chẵn liên tiếp là
S=a+(a+2)+...+(a+4006)=[\(\frac{a+\left(a+4006\right)}{2}\)].2004=(a+2003 ) .2004
Ta có : ( a+2003).2004 =8030028 <=> a=2004
Vậy ta có : 8030028 =2004 +2006+2008 +...+6010
CM: Ta có: \(\widehat{BIM}+\widehat{MIN}+\widehat{NIC}=\widehat{BIC}\)
=> \(\widehat{BIC}=2.30^0+90^0=150^0\)
Ta lại có : \(\widehat{FIB}+\widehat{BIC}=180^0\) (kề bù)
=> \(\widehat{FIB}=180^0-\widehat{BIC}=180^0-150^0=30^0\)
=> \(\widehat{FIB}=\widehat{EIC}=30^0\) (đối đỉnh)
Xét t/giác FIB và t/giác MIB
có : \(\widehat{B_1}=\widehat{B_2}\) (gt)
BI : chung
\(\widehat{FIB}=\widehat{BIM}=30^0\)
=> t/giác FIB = t/giác MIB (g.c.g)
=> BF = BM (2 cạnh t/ứng)
Xét t/giác EIC và t/giác NIC
có : \(\widehat{C_1}=\widehat{C_2}\) (gt)
IC : chung
\(\widehat{EIC}=\widehat{NIC}=30^0\)
=> t/giác EIC = t/giác NIC (g.c.g)
=> EC = IN (2 cạnh t/ứng)
Ta có: BC = BM + MN + NC
hay BC = BF + MN + EC
=> CE + BF = BC - MN => CE + BF < BC (Đpcm)
a ) Áp dụng định lí Py-ta-go vào tam giác vuông ABC có :
\(AB^2+BC^2=AC^2\)
\(5^2+12^2=AC^2\)
\(169=AC^2\)
\(\Rightarrow AC=\sqrt{169}=13\left(cm\right)\)
Vậy AC = 13 cm
b ) Ta có : \(\widehat{EBA}+\widehat{EBD}=180^o\)
\(90^o+\widehat{EBD}=180^o\)
\(\Rightarrow\widehat{EBD}=180^o-90^o=90^o\)
Xét \(\Delta EBA\) và \(\Delta EBD\) có :
BA = BD ( gt )
\(\widehat{EBA}=\widehat{EBD}\left(=90^o\right)\)
BE là cạnh chung
nên \(\Delta EBA=\Delta EBD\left(c.g.c\right)\)
=> EA = ED ( hai cạnh tương ứng )
=> \(\Delta EAD\) cân tại E
A) Áp dụng định lý Py-ta-go ta có :
AC^2 = AB ^2+ BC^2
=>√AC = 25+144
=> AC = 13
b)Xét tam giác AEB và Tam giác DEB cùng vuông tại B ta có :
AB = BD
BE chung
=> tam giác AEB = tam giác DEB(2 cạch góc vuông)
=> AE = ED (2 cạnh tương ứng)
=> Tam giác AED cân tại E
A)Tam giác ABC = tam giác DEG ta có:
=>A =D = 20 độ ( 2 góc tương ứng)
=> C = G = 60 độ
=> E = B = 100 độ
B) DG = AC =5cm
a ) Do \(\Delta ABC=\Delta DEG\)\(\Rightarrow\widehat{A}=\widehat{D}\) ; \(\widehat{B}=\widehat{E}\) ; \(\widehat{C}=\widehat{G}\)
Vì \(\widehat{B}=\widehat{E}\)mà \(\widehat{E}=100^o\Rightarrow\widehat{B}=100^o\)
Vậy \(\Delta ABC\)có \(\widehat{A}=20^o;\widehat{B}=100^o;\widehat{C}=60^o\)
Vì \(\widehat{C}=\widehat{G}\) mà \(\widehat{C}=60^o\Rightarrow\widehat{G}=60^o\)
\(\widehat{A}=\widehat{D}\) mà \(\widehat{A}=20^o\Rightarrow\widehat{D}=20^o\)
Vậy \(\Delta DEG\) có \(\widehat{D}=20^o;\widehat{E}=100^o;\widehat{G}=60^o\)
b ) Do \(\Delta ABC=\Delta DEG\Rightarrow AB=DE\); \(BC=EG\); \(AC=DG\)
mà DG = 5cm => AC = DG = 5cm
Vậy \(\Delta ABC\) có AC = 5cm
Em tham khảo link này nhé! Câu hỏi của Ngọc - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của Ngọc Ánh - Toán lớp 10 | Học trực tuyến
Bạn tham khảo link tại đây nhé
Ta có : \(\frac{a}{b}=\frac{ad}{bd},\frac{c}{d}=\frac{bc}{bd}\)
a, Mẫu chung bd > 0 do b > 0 , d > 0 nên nếu \(\frac{ad}{bd}< \frac{bc}{bd}\)thì ad < bc
b, Ngược lại, nếu ad < bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\). Suy ra \(\frac{a}{b}< \frac{c}{d}\)
Ta có thể viết : \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)
Đặt \(A=x^2+2.|y-2|-1\)
Ta có: \(\hept{\begin{cases}x^2\ge0\forall x\\2.|y-2|\ge0\forall x\end{cases}}\)
\(\Rightarrow x^2+2.|y-2|\ge0\forall x,y\)
\(\Rightarrow x^2+2.|y-2|-1\ge0-1\forall x,y\)
Hay \(A\ge-1\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}}\)
Vậy Min A=-1 \(\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vì \(x^2\ge0\)
\(2\left|y-2\right|\ge0\)
\(\Rightarrow x^2+2\left|y-2\right|-1\ge-1\)
Vậy \(GTNN=-1\)tại \(x=0\)và \(y=2\)
a) \(f\left(x\right)=5x^3-7x^2+2x+5\)
\(\Rightarrow f\left(1\right)=5.1^3-7.1^2+2.1+5\)
\(\Rightarrow f\left(1\right)=5.1-7.1+2+5\)
\(\Rightarrow f\left(1\right)=5-7+7\)
\(\Rightarrow f\left(1\right)=5\)
Vậy f(1) = 5.
\(g\left(x\right)=7x^3-7x^2+2x+5\)
\(\Rightarrow g\left(\frac{1}{2}\right)=7.\left(\frac{1}{2}\right)^3-7.\left(\frac{1}{2}\right)^2+2.\frac{1}{2}+5\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=7.\frac{1}{8}-7.\frac{1}{4}+1+5\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{7}{8}-\frac{14}{8}+6\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{-7}{8}+\frac{48}{8}\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{41}{8}\)
Vậy \(g\left(\frac{1}{2}\right)=\frac{41}{8}\)
\(h\left(x\right)=2x^3+4x+1\)
\(\Rightarrow h\left(0\right)=2.0^3+4.0+1\)
\(\Rightarrow h\left(0\right)=0+0+1\)
\(\Rightarrow h\left(0\right)=1\)
Vậy \(h\left(0\right)=1\)
b) 61/69 và 85/93
Ta có 61/69 = 1 - 8/69
85/93 = 1 - 8/93
Vì 8/69 > 8/93
=> 1 - 8/69 < 1 - 8/93
=> 61/69 < 85/93
c) 11/17 và 113/173
Ta có : 11/17 = 110/170 = 1 - 110/170 = 60/170
113/173 = 1 - 60/173
Vì 60/170 > 60/173
=> 1 - 60/170 < 1 - 60/173
=> 11/17 < 113/173
bạn ko làm làm a