A=5/1x6+5/6x11+5/11x16+5/16x21+...+5/101x106
B=3/1x4+3/4x7+3/7x10+....+3/97x100
C=1/2x7+1/7x12+1/12x17+....+1/97x102
D=1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72
E=3/2x4+3/4x6+3/6x8+....+3/98x100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 37:
a) A = \(\left\{T;R;Ư;Ơ;N;G;Q;U;A\right\}\)
b) B= \(\left\{H;O;C;S;I;N;T;A;E\right\}\)
Bài 38: ( mình viết 2 cách là theo thứ tự nhé )
a) A = \(\left\{0;1;2;3;4\right\}\)
A = \(\left\{x\in N|x< 5\right\}\)
b) M = \(\left\{8;9;10;...;15;16\right\}\)
M = \(\left\{x\in N|7< x< 17\right\}\)
c) N = \(\left\{3;4;5;6;...;13;14\right\}\)
N = \(\left\{x\in N|3\le x< 15\right\}\)
d) D = \(\varnothing\) ( D thuộc tập hợp rỗng )
D = \(\left\{x\in N|2< x< 3\right\}\)
e) E = \(\left\{5;6\right\}\)
E = \(\left\{x\in N|5\le x\le6\right\}\)
f ) F = \(\left\{11;12;13;14;15\right\}\)
F = \(\left\{x\in N|10< x\le15\right\}\)
Bài 39:
a) A = \(\left\{x\in N|99< x\le999\right\}\)
b) B = \(\left\{x\in N|x< 8\right\}\)
c) C = \(\left\{x\in N|10\le x\le99\right\}\)
d) D = \(\left\{x\in N|0< x< 5\right\}\)
Chúc bạn học tốt
A = \(\dfrac{1}{3}\) + \(\dfrac{2}{3^2}\) + \(\dfrac{3}{3^3}\)+.........+\(\dfrac{100}{3^{100}}\)
3A = 1 + \(\dfrac{2}{3}\) + \(\dfrac{3}{3^2}\) + \(\dfrac{4}{3^3}\)+...+\(\dfrac{100}{3^{99}}\)
3A - A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+\(\dfrac{1}{3^{99}}\)- \(\dfrac{100}{3^{100}}\)
2A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+ \(\dfrac{1}{3^{99}}\) - \(\dfrac{100}{3^{100}}\)
A = ( 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+ \(\dfrac{1}{3^{99}}\) - \(\dfrac{100}{3^{100}}\)) : 2
Đặt B = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+ ........ + \(\dfrac{1}{3^{99}}\)
3B = 3 + 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +...+\(\dfrac{1}{3^{98}}\)
3B - B = 3 - \(\dfrac{1}{3^{99}}\)
2B = 3 - \(\dfrac{1}{3^{99}}\)
B = (3 - \(\dfrac{1}{3^{99}}\)): 2 =\(\dfrac{3}{2}\) - \(\dfrac{1}{3^{99}.2}\)
A = ( \(\dfrac{3}{2}\) - \(\dfrac{1}{2.3^{99}}\) - \(\dfrac{100}{3^{100}}\)) : 2
A = \(\dfrac{3}{4}\) - \(\dfrac{1}{4.3^{99}}\) - \(\dfrac{50}{3^{100}}\) < \(\dfrac{3}{4}\) ( đpcm)
IC = \(\dfrac{1}{2}\)BC (vì trong tam giác đều đường cao cũng là trung tuyến, đường trung trực, đường phân giác của tam giác đó).
IC = 6 \(\times\) \(\dfrac{1}{2}\) = 3 (cm)
Xét \(\Delta\)AIC vuông tại C nên theo pytago ta có:
AI2 = AC2 - IC2 = 62 - 32 = 27 (cm)
AI = \(\sqrt{27}\) = 3\(\sqrt{3}\)(cm)
Chọn A. 3\(\sqrt{3}\)cm
a) \(\dfrac{8,5-8,2}{16}=\dfrac{0,3}{16}=\dfrac{0,3\cdot10}{16\cdot10}=\dfrac{3}{160}\)
b) \(\dfrac{17\cdot5-17}{3-20}=\dfrac{17\cdot\left(5-1\right)}{-17}=\dfrac{1\cdot4}{-1}=-4\)
a)
\(\dfrac{8\cdot5-8\cdot2}{16}=\dfrac{8\left(5-2\right)}{16}=\dfrac{3}{2}\)
b)
\(\dfrac{17\cdot5-17}{3-20}=\dfrac{17\left(5-1\right)}{-17}=\dfrac{4}{-1}=-4\)
Tranh do học sinh được đồ họa bằng máy tính thì có được tham gia không cô?
Khuyến khích các em sáng tạo không giới hạn, nên các em có thể vẽ tranh bằng đồ họa máy tính nhé.
a. \(\dfrac{8,5-8,2}{16}=\dfrac{0,3}{16}=\dfrac{3}{160}\)
b. \(\dfrac{2\cdot14}{7\cdot8}=\dfrac{1\cdot2}{1\cdot4}=\dfrac{2}{4}=\dfrac{1}{2}\)
c. \(\dfrac{11\cdot4-11}{2-13}=\dfrac{11\left(4-1\right)}{-11}=\dfrac{1\cdot3}{-1}=-3\)
d. \(\dfrac{49+7\cdot49}{49}=\dfrac{49\cdot\left(1+7\right)}{49}=\dfrac{8}{1}=8\)
Em cần phần nào nhỉ .
A = \(\dfrac{5}{1.6}\)+\(\dfrac{5}{6.11}\)+\(\dfrac{5}{11.16}\)+\(\dfrac{5}{16.21}\)+...+\(\dfrac{5}{101.106}\)
A = \(\dfrac{1}{1}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{101}-\dfrac{1}{106}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{106}\)
A = \(\dfrac{105}{106}\)
B = \(\dfrac{3}{1.4}\) +\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{97.100}\)
B = \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
B = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)
B = \(\dfrac{99}{100}\)
C = \(\dfrac{1}{2.7}+\dfrac{1}{7.12}\) + \(\dfrac{1}{12.17}\)+...+ \(\dfrac{1}{97.102}\)
C= \(\dfrac{1}{5}\) \(\times\)( \(\dfrac{5}{2.7}+\dfrac{5}{7.12}+\dfrac{5}{12.17}+...+\dfrac{5}{97.102}\))
C = \(\dfrac{1}{5}\)\(\times\)(\(\dfrac{1}{2}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{12}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{17}\)+...+ \(\dfrac{1}{97}\) - \(\dfrac{1}{102}\))
C = \(\dfrac{1}{5}\) \(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{102}\))
C = \(\dfrac{1}{5}\) \(\times\) \(\dfrac{25}{51}\)
C = \(\dfrac{5}{51}\)
D = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)
D = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)+\(\dfrac{1}{7.8}\)+ \(\dfrac{1}{8.9}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{9}\)
D = \(\dfrac{8}{9}\)
E = \(\dfrac{3}{2.4}\)+\(\dfrac{3}{4.6}\)+\(\dfrac{3}{6.8}\)+...+\(\dfrac{3}{98.100}\)
E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{2}{2.4}\) + \(\dfrac{2}{4.6}\)+ \(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{98.100}\))
E = \(\dfrac{3}{2}\)\(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\) - \(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{98}\) - \(\dfrac{1}{100}\))
E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{100}\))
E = \(\dfrac{3}{2}\) \(\times\) \(\dfrac{49}{100}\)
E = \(\dfrac{147}{200}\)