K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2018

a) \(a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)

=> ĐPCM

b) \(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3a^2+3b^2+3c^2\)

\(\Leftrightarrow-2a^2-2b^2-2c^2+2ab+2bc+2ac=0\)

\(\Leftrightarrow-\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)=0\)

\(\Leftrightarrow-\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)

=> ĐPCM

c) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3ab+3bc+3ac\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)

=> ĐPCM

16 tháng 8 2018

(=) 1999.1999-1998.1999-1998

(=)1999.(1999-1998)-1998

(=)1999.1-1998

(=)1999-1998=1

16 tháng 8 2018

bang 1

16 tháng 8 2018

Ta có \(\left(a^2+b^2+c^2\right)^2=4\Rightarrow a^4+b^4+c^4=4-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Mà \(\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)=2\)

=> \(ab+bc+ca=-1\Rightarrow\left(ab+bc+ca\right)^2=1\)

=> \(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\Rightarrow a^2b^2+b^2c^2+c^2a^2=1\)

=> \(a^4+b^4+c^4=4-2=2\)

^.^

16 tháng 8 2018

Theo bài ra ta có : a2 + b2 + c2 = 2 .

Do đó : ( a2 + b2 + c2 )2 = 22 .

      ⇒      a4 + b4 + c4     = 4 .

Vậy  a4 + b4 + c4 = 4 .

16 tháng 8 2018

Câu a trả lời chi tiết giúp mình ạ