K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: CMR các biểu thức sau luôn dương vs mọi giá trị của biếnx2 - 8x +19                                              c) 4x2+ 4x+ 3x2+ y2- 4x+2                                            d) x2- 2xy+2y2+2y+5x2 + 4y2 – 2xy – 6y- 10( x- y) + 32Bài 3:CMR các biểu thức sau luôn âm vs mọi giá trị của bi- x2+ 2x - 7                                              c) -x2 - 6x - 10- x2 - 3x - 5                                               d) -x2+ 4xy - 5y2- 8y...
Đọc tiếp

Bài 2: CMR các biểu thức sau luôn dương vs mọi giá trị của biến

  1. x2 - 8x +19                                              c) 4x2+ 4x+ 3

  2. x2+ y2- 4x+2                                            d) x2- 2xy+2y2+2y+5

  3. x2 + 4y2 – 2xy – 6y- 10( x- y) + 32

Bài 3:CMR các biểu thức sau luôn âm vs mọi giá trị của bi

  1. - x2+ 2x - 7                                              c) -x2 - 6x - 10

  2. - x2 - 3x - 5                                               d) -x2+ 4xy - 5y2- 8y -18

  3. –x2 + 2xy- 4y2 + 2x + 10y - 8

Bài 4: a) Cho ba số x, y, z thỏa mãn: x + y + z = 0 và x2 + y2 + z2 = a2.  Tính x4 + y4 + z4

b)Cho x, y thỏa mãn : x + y = a ; x2 + y2 = b và x3 + y3 = c. Chứng minh rằng : a3 + 2c = 3ab

c) Cho a + b + c + d = 0.Chứng minh rằng a3 + b3 + c3 + d3 = 3( c +d)( ab – cd)

 

1
30 tháng 9 2018

\(A=x^2-8x+19\)

\(=x^2-8x+16+3\)

\(=\left(x-4\right)^2+3\)

Nhận thấy:  \(\left(x-4\right)^2\ge0\)  ;  \(\forall x\)

=>  \(\left(x-4\right)^2+3>0\)

hay A luôn dương với mọi giá trị của x

16 tháng 8 2018

Bạn chỉ cần lấy kết quả đó và làm ngược lại vs các bước phía trên:

- lấy kết quả đó cộng với 100

- Chia kết quả đó cho 5

- Tiếp tục lấy kết quả trên trừ cho 10

- Được bao nhiêu đem chia cho 2

- Trừ thêm 5

Sẽ ra tuổi của bn!!! Hay ko?

=^.^= 

Nếu gọi số tuổi là x thì ta có kết quả cuối cùng là:

[2(x + 5) + 10] . 5 - 100 = (2x + 10 + 10) . 5 - 100

                                    = (2x + 20) . 5 - 100

                                     = 10x + 100 - 100

                                     = 10x

Thực chất kết quả cuối cùng được đọc lên chính là 10 lần số tuổi của bạn

Vì vậy, khi đọc kết quả cuối cùng, thì tôi chỉ việc bỏ đi một chữ số 0 ở tận cùng là ra số tuổi của bạn. Chẳng hạn bạn đọc là 130 thì tuổi của bạn là 13.

16 tháng 8 2018

Ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right).\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{a\left(b+c\right)}{b+c}+\frac{b\left(c+a\right)}{c+a}+\frac{c\left(a+b\right)}{a+b}=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)

Suy ra a2/(b+c) + b2/(c+a) + c2/(a+b) = 0

=> ĐPCM

16 tháng 8 2018

ta có \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(=\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(=\frac{a^2+a\left(b+c\right)}{b+c}+\frac{b^2+b\left(c+a\right)}{c+a}+\frac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)

\(=\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

\(=\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\left(a+b+c\right)=a+b+c\)

\(=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\left(đpcm\right)\)

17 tháng 8 2018

Gọi d là ƯC(n3+2n;n4+3n2+1)

n3+2n chia hết d;n4+3n2+1 chia hết d

n(n3+2n) chia hết d ; n4+3n2+1 chia hết d

n4+2n2 chia hết d; n4+3n2+1 chia hết d

(n4+3n2+1) - (n4+2n2) chia hết d

n2+1 chia hết d

n(n2+1) chia hết d

n3+n chia hết d

(n3+2n)-(n3+n) chia hết d

n chia hết d

nchia hết d

(n2+1)-(n2) chia hết cho d

 1 chia hết d

d=1 

PS tối giản

17 tháng 8 2018

Gọi d là ước chung của \(n^3+2n\) và \(n^4+3n^2+1\) . ta có :

+) \(n^3+2n⋮d\)

\(\Rightarrow n\left(n^3+2n\right)⋮d\)

\(\Rightarrow n^4+2n^2⋮d\)   (1)

Và  \(n^4+3n^2+1-\left(n^4+2n^2\right)=n^2+1⋮d\)

\(\Rightarrow\left(n^2+1\right)^2=n^4+2n^2+1⋮d\) (2)

Từ (1) và (2)

\(\Rightarrow\left(n^4+2n^2+1\right)-\left(n^4+2n\right)^2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=\pm1\)

Vậy \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản (đpcm)

16 tháng 8 2018

Gọi O là giao điểm 2 dường chéo AC và BD của tứ giác ABCD. 
Áp dụng định lý " trong một tam giác một cạnh thì bé hơn tổng 2 cạnh kia" ta có: 
AB < OA + OB (1) 
BC < OB + OC (2) 
CD < OC + OD (3) 
DA < OD + OA (4) 
(1) + (2) + (3) + (4) : 
AB + BC + CD + DA < 2(OA + OC + OB + OD) = 2(AC + BD) 
hay (1/2)(AB + BC + CD + DA) < AC + BD (*) 
Mặt khác : 
AC < AB + BC (1') 
BD < BC + CD (2') 
AC < CD + DA (3') 
BD < DA + AB (4') 
(1') + (2') + (3') + (4') : 
2(AC + BD) > 2(AB + BC + CD + DA) 
hay AC + BD < AB + BC + CD + DA (**) 
Từ (*) và (**) (1/2)(AB + BC + CD + DA) < AC + BD < AB + BC + CD + DA

16 tháng 8 2018

Giả sử tứ giác ABCD có: AB=a,BC=b,CD=c,DA=d.

Gọi O là giao điểm của AC và BD ta có:

AC+BD=AO+OB+OC+OD>AB+CD=a+c

Tương tự: AC+BD>b+d.

Suy ra: 2(AC+BD)>a+b+c+d⇒AC+BD=a+b+c+d2

Vậy tổng hai đường chéo lớn hơn nửa chu vi của tứ giác.

Theo bất đẳng thức tam giác ta có:

AC<a+b;AC<c+d

BD<b+c;BD<a+d

⇒2(AC+BD)<2(a+b+c+d).

⇒AC+BD<a+b+c+d.

Vậy tổng hai dường chéo nhỏ hơn chu vi tứ giác.