Cho tam giác ABC. Góc A = 30 độ . Dựng ở ngoài tam giác ABC tam giác đều BCD. CMR: AD^2=AB^2+AC^2
Dùng định lí Pitago kiểu gì trong bài này đây???....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có AB // CD suy ra góc A = góc D = 90
Từ B kẻ đường thẳng vuông góc với DC tại H ( H thuộc DC)
ABHD là hình vuông suy ra DH= BH = AB=2 cm
HC =DC \(-\)DH = 2 cm Tam giác BHD vuông cân tại H suy ra góc DCB = 45
SUY RA góc ABC = 180 - góc DCB = 135
Lấy E làm điểm đối xứng với A qua BD
=> KA = KE
và AE vuông góc với BK .
Vì ABCD là hình bình hành (GT)
\(\Rightarrow AB=DC\) (1)
( Tính chất của hình bình hành)
Mặt khác ta có :
\(\hept{\begin{cases}KA=KE\left(cmt\right)\\BK\perp AE\end{cases}}\)
\(\Rightarrow\Delta ABE\)cân
( Tính chất đường cao , đường trung tuyến trong 1 tam giác)
Vì tam giác ABE cân
\(\Rightarrow AB=BE\) (2)
Từ (1) và (2)
\(\hept{\begin{cases}AB=DC\\AB=BE\end{cases}}\)
\(\Rightarrow DC=BE\)
=> ECBD là hình thang cân
( vì hình thang coa hai đường chéo bằng nhau là hình thang cân)
\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)
\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)
\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x
3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2
Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)
Tương tự ta có b^2-a^2=n
Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn
Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1
Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)
Từ (1) và (2)=> n chia hết cho 40
tam giac abc co vuong ko ban
chắc ko đâu nhỉ :))