a) 4x^2 + 8xy - 3xy^2) [-3/4x^2y]
b) 4x^3(2x^2 - x + 5)5x
Giúp em với !! Em cảm ơnnnnn :3 <33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow x^2-2x+1-9\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow x^2-2x+1-9x^2-2x-9=0\)
\(\Leftrightarrow-8x^2-4x-8=0\)
\(\Leftrightarrow-4\left(2x^2+x+2\right)=0\)
\(\Leftrightarrow2x^2+x+2=0\)
Xét \(\Delta=1^2-4\cdot2\cdot2=-15< 0\)
⇒ Phương trình vô nghiệm
Vậy \(S=\varnothing\).
(x-1)2 - 9 (x-1)2 = 0
(x-1)2.(1-9) =0
x-1 = 0
x = 1
Ta có: \(\left(x-1\right)^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left[\left(x-1\right)-3\left(x+1\right)\right]\left[x-1+3\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{1}{2}\end{matrix}\right.\)
...
I'll let you draw the figure.
a) AM is a median of the triangle ABC. Therefore, M is the midpoint of BC.
E is symmetric to A through M, so M is the midpoint of AE.
Consider the quadrilateral ABEC, it has M is the midpoint of both AE and BC. Thus, ABEC is a parallelogram.
b) Consider the triangle ADE, M is the midpoint of AE, H is the midpoint of AD. Therefore, HM is the average line of this triangle. This means \(HM//DE\) or \(DE//BC\), which means BCED is a trapezoid.
Triangle ABD has the height BH, which is also a median. Thus, ABD must be an isosceles triangle, which means the height BH is also a bisector, or \(\widehat{ABH}=\widehat{DBH}\) or \(\widehat{ABC}=\widehat{DBC}\)
On the other hand, ABEC is a parallelogram. So, \(AB//CE\) and this leads to \(\widehat{ABC}=\widehat{ECB}\) (2 staggered angles of 2 parallel lines)
From these, we have \(\widehat{DBC}=\widehat{ECB}\left(=\widehat{ABC}\right)\)
The trapezoid BCED (DE//BC) has \(\widehat{DBC}=\widehat{ECB}\). Therefore, BCED must be an isosceles trapezoid.
5. (2 + x) (x+2) - \(\dfrac{1}{2}\) . (6-8x)2 + 17
= 5 ( x2 + 4x + 4) - \(\dfrac{1}{2}\). 4 ( 3 - 4x) 2+ 17
= 5x2 + 20 x + 20 - 2 ( 9 - 24x + 16x2) + 17
= 5x2 + 20x + 20 - 18 + 58x - 32x2 + 17
= -27x2 + 78 x + 19
A = x2 + 5x - 5
A = x2 + 2. \(\dfrac{5}{2}\) x + ( \(\dfrac{5}{2}\))2 - \(\dfrac{45}{4}\)
A = (x + \(\dfrac{5}{2}\))2 - \(\dfrac{45}{4}\)
(x + \(\dfrac{5}{2}\))2 ≥ 0 ⇔ A = (x + \(\dfrac{5}{2}\))2 - \(\dfrac{45}{4}\) ≥ \(\dfrac{-45}{4}\)
A(min) = -45/4 = xảy ra ⇔ x + 5/2 = 0 ⇔ x = -5/2
(4x2 + 8xy - 3xy2 )(-\(\dfrac{3}{4}\)x2y)
= -3x2y - 6x3y2 +\(\dfrac{9}{4}\)x3y3
4x3(2x2 - x + 5) 5x
= 20x4(2x2 - x + 5)
= 40x6 - 20x5 +100x4