-½x²×(6x-3)+3x(x²+½)-²x+5 tại x=-3
Help me c.ơn tr
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\left(x-5\right)-x\left(x-10\right)+1=26\)
\(2x^2-10x-x^2+10x-25=0\)
\(x^2-25=0\)
\(\left(x-5\right)\left(x+5\right)=0\)
\(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
\(7\left(2x-5\right)-5\left(7x-2\right)+2\left(5x+7\right)=\left(x-2\right)-\left(x+4\right)\)
\(14x-35-35x+10+10x+14=-6\)
\(-11x-11=-6\)
\(x=-\dfrac{5}{11}\)
\(10x-5-32+12x=7\)
\(22x=44\)
\(x=2\)
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(a^2+b^2+c^2=ab+bc+ca\)
\(\dfrac{1}{2}\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)=0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)
\(< =>a=b=c\)
a) \(x^4+2x^3+x^2=\left(x^2+x\right)^2\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y=\left(x-y\right)^3-\left(x+y\right)\)
c) \(5x^2-10xy+5y^2-20z^2=\left(\sqrt{5x}-\sqrt{5y}\right)^2-20z^2\)
d) \(x^2+4x+3=x^2+3x+x+3=x\left(x+3\right)+\left(x+3\right)=\left(x+1\right)\left(x+3\right)\)
Mình nghĩ đề là Cho \(x+\dfrac{1}{x}=3\) phù hợp hơn nhé.
Ta có: \(x+\dfrac{1}{x}=3\)\(\Rightarrow\left(x+\dfrac{1}{x}\right)^2=3^2\)
\(\Leftrightarrow x^2+2.x.\dfrac{1}{x}+\dfrac{1}{x^2}=9\Leftrightarrow x^2+2+\dfrac{1}{x^2}=9\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}=7\)
Vậy \(x^2+\dfrac{1}{x^2}=7\)
\(4)25-1^2=\left(5-1\right)\left(5+1\right)=4.6=24\\ 5)a^2-9=a^2-3^2=\left(a-3\right)\left(a+3\right)\)
Ta có \(P=2x^2-4x+7=2\left(x^2-2x+\dfrac{7}{2}\right)=2\left(x^2-2x+1+\dfrac{5}{2}\right)\) \(=2\left(x-1\right)^2+5\)
Mà \(2\left(x-1\right)^2\ge0\Leftrightarrow2\left(x-1\right)^2+5\ge5>0\) hay \(P>0\) (đpcm)
Mặt khác \(H=-2x^2-16x+38=-2\left(x^2+8x-19\right)\) \(=-2\left(x^2+8x+16-35\right)=-2\left(x+4\right)^2-70\)
Mà \(-2\left(x+4\right)^2\le0\Leftrightarrow-2\left(x+4\right)^2-70\le-70< 0\) nên ta có \(H< 0\) (đpcm)
`2x^2 - 4x + 7`
`<=> 2x^2 - 4x + 2 + 5`
`<=> 2.(x-1)^2 + 5`
Mà : \(2\left(x-1\right)^2\ge0\forall x\)
`=>` \(2\left(x-1\right)^2+5\ge0\forall x\)
Vậy `2x^2 -4x+7` luôn dương với mọi `x`
_______________________________________
`-2x^2 - 16x + 38`
`<=> -2.(x^2+8x-19)`
Mà :\(x^2+8x-19\ge0\forall x\)
`=>` \(-2x.\left(x^2+8x-19\right)\le0\forall x\)
Vậy `-2x^2-16x+38` luôn âm với mọi `x`