Cho tam giác ABC có p, R và r lần lượt là nửa chu vi, bán kính đường tròn ngoại tiếp và nội tiếp tam giác. Tìm GTNN của \(\dfrac{p^2}{r\left(4R+r\right)}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vai trò a,b không đổi ta giả sử a > b
Ta có : |ab + 1| > |a - b|
=> |ab + 1|2 > |a - b|2
<=> (ab)2 + 2ab + 1 > a2 + b2 - 2ab
<=> (ab)2 - a2 - b2 + 1 + 4ab > 0
<=> (a2 - 1)(b2 - 1) + 4ab > 0 (1)
Nếu a \(\ge\) b \(\ge\)1 hay -1 \(\ge\) a \(\ge\) b thì (1) luôn đúng
Nếu -1 \(\le\) b \(\le\) a \(\le\) 1 và ab \(\ge\) 0 thì
(a2 - 1)(b2 - 1) > 0 ; ab > 0 => (1) luôn đúng
Nếu -1 \(\le\) b \(\le\) a \(\le\) 1và ab \(\le\) 0 (2)
Khi đó nếu trong 5 số thực đó chỉ có số không âm
=> (2) không xảy ra => (1) luôn đúng
Nếu dãy trên tồn tại ít nhất một số thực a < 0 hay nhiều hơn
thì (1) luôn đúng do khi đó luôn tồn tại ít nhất cặp số ab > 0 và (2) không xảy ra
=> ĐPCM
Pt hoành độ giao điểm: \(x^2+4mx+5m-3=0\)
\(\Delta'=4m^2-5m+3>0;\forall m\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_M+x_N=-4m\\x_M.x_N=5m-3\end{matrix}\right.\)
\(MN=\sqrt{\left(x_M-x_N\right)^2+\left(y_M-y_N\right)^2}\)
\(=\sqrt{\left(x_M+x_N\right)^2-4x_Mx_N+\left(3-3\right)^2}\)
\(=\sqrt{16m^2-4\left(5m-3\right)}=\sqrt{16m^2-20m+12}=\sqrt{130}\)
\(\Rightarrow16m^2-20m-118=0\)
Theo hệ thức Viet: \(a+b=-\dfrac{-20}{16}=\dfrac{5}{4}\)
Pt hoành độ giao điểm (d) và (P):
\(x^2-8x=x-m\Leftrightarrow x^2-9x+m=0\)
\(\Delta=81-4m\ge0\Rightarrow m\le\dfrac{81}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}a+b=9\\ab=m\end{matrix}\right.\)
\(a^3+b^3=675\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)=675\)
\(\Leftrightarrow9^3-27m=675\)
\(\Rightarrow m=2\)
Pt hoành độ giao điểm (d) và (P):
x\(^2\)
−8x=x−m⇔x\(^2\)
−9x+m=0
Δ=81−4m≥0⇒m≤\(\dfrac{81}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}a+b=9\\ab=m\end{matrix}\right.\)
ABC cân tại B \(\Rightarrow AB=BC=4\)
\(\overrightarrow{AB}.\overrightarrow{BC}=-\overrightarrow{BA}.\overrightarrow{BC}=-AB.BC.cos\widehat{ABC}=-8\)
\(\Rightarrow cos\widehat{ABC}=\dfrac{8}{AB.BC}=\dfrac{1}{2}\Rightarrow\widehat{ABC}=60^0\)
\(\Rightarrow\Delta ABC\) đều
\(\Rightarrow\widehat{BAC}=60^0\)
\(\overrightarrow{BC}=\left(2;4\right)=2\left(1;2\right)\)
Do đường cao AH vuông góc BC nên nhận \(\left(1;2\right)\) là 1 vtpt
Phương trình AH qua A có dạng:
\(1\left(x-2\right)+2\left(y-1\right)=0\Leftrightarrow x+2y-4=0\)