K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

Ta có: \(\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\left(a+b+c\right)=1.\left(a+b+c\right)\)

=>\(\frac{a^2}{b+c}+\frac{a\left(b+c\right)}{b+c}+\frac{b^2}{a+c}+\frac{b\left(a+c\right)}{a+c}+\frac{c^2}{a+b}+\frac{c\left(a+b\right)}{a+b}=a+b+c\)

=> \(\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c=a+b+c\)

=> \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)

(x+2).(x+3).(x+4).(x+5)−24

=(x2+7x+10).(x2+7x+12)−24

=(x2+7x+10).(x2+7x+10+2)−24

Đặt x2+7x+10=t, ta có

t.(t+2)−24

=t2+2t−24

=t2+2t+1−25

=(t−1)2−25

=(t−1−5)(t−1+5)

=(t−6)(t+4)

=(x2+7x+10−6)(x2+7x+10+4)

(x2+7x+4)(x2+7x+14)

P/s tham khảo nha

\(\left(x+2\right).\left(x+3\right).\left(x+4\right).\left(x+5\right)-24\)

\(\Leftrightarrow\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)

\(\Leftrightarrow\left(x^2+7x+10\right).\left(x^2+7x+10+2\right)-24\)

Đặt \(x^2+7x+10=t\), ta có

\(t.\left(t+2\right)-24\)

\(\Leftrightarrow t^2+2t-24\)

\(\Leftrightarrow t^2+2t+1-25\)

\(\Leftrightarrow\left(t-1\right)^2-25\)

\(\Leftrightarrow\left(t-1-5\right)\left(t-1+5\right)\)

\(\Leftrightarrow\left(t-6\right)\left(t+4\right)\)

\(\Rightarrow\left(x^2+7x+10-6\right)\left(x^2+7x+10+4\right)\)

\(\Leftrightarrow\left(x^2+7x+4\right)\left(x^2+7x+14\right)\)

P/s tham khảo nha

8 tháng 11 2018

x+y+z=-3 => (x+1)+(y+1)+(z+1)=0

Đặt x+1=a,y+1=b,z+1=c ta có:

a+b+c=0 => a3+b3+c3=3abc (tự cm) hay (x+1)3+(y+1)3+(z+1)3=3(x+1)(y+1)(z+1) (dpdcm)