Cho 0< a; b; c <1. Chứng minh
\(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2\sqrt[3]{abc}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk : a;b >= 0
pt => a-b = a+b-2\(\sqrt{ab}\)
<=> 2\(\sqrt{ab}\) = (a+b)-(a-b) = 2b
<=> \(\sqrt{ab}\)= b
=> ab = b^2
<=> a=b >= 0
Thử lại : VT = 0
VP = 0
=> VT=VP=0 (tm)
Vậy a=b >= 0
Áp dụng BĐT AM-GM ta có:
\(VT=a^2+b^2+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b\)
\(=1+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b\)
\(=1+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{1}{a}+2a\right)+\left(\frac{1}{b}+2b\right)-\left(a+b\right)\)
\(\ge3+2\sqrt{\frac{1}{a}\cdot2a}+2\sqrt{\frac{1}{b}\cdot2b}-\sqrt{2\left(a^2+b^2\right)}\)
\(\ge3+4\sqrt{2}-\sqrt{2}=3+3\sqrt{2}=3\left(1+\sqrt{2}\right)\)
Khi \(a=b=\frac{1}{\sqrt{2}}\)
ai trả lời hộ tui cái sắp thi r