K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

ai trả lời hộ tui cái sắp thi r

27 tháng 11 2017

Đk : a;b >= 0 

pt => a-b = a+b-2\(\sqrt{ab}\)

<=> 2\(\sqrt{ab}\) = (a+b)-(a-b) = 2b

<=> \(\sqrt{ab}\)= b

=> ab = b^2 

<=> a=b >= 0 

Thử lại : VT = 0

VP = 0

=> VT=VP=0 (tm)

Vậy a=b >= 0 

27 tháng 11 2017

=.=" bao nhiêu tuổi vậy ông nội

27 tháng 11 2017

Anh lp 9 nha

26 tháng 5 2023

=26928

 

27 tháng 11 2017

Áp dụng BĐT AM-GM ta có: 

\(VT=a^2+b^2+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b\)

\(=1+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b\)

\(=1+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{1}{a}+2a\right)+\left(\frac{1}{b}+2b\right)-\left(a+b\right)\)

\(\ge3+2\sqrt{\frac{1}{a}\cdot2a}+2\sqrt{\frac{1}{b}\cdot2b}-\sqrt{2\left(a^2+b^2\right)}\)

\(\ge3+4\sqrt{2}-\sqrt{2}=3+3\sqrt{2}=3\left(1+\sqrt{2}\right)\)

Khi \(a=b=\frac{1}{\sqrt{2}}\)