K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2018

x4 + 4x2y + 3y2 +6y - 16 = 0

(x4 +4x2y + 4y2) - (y2 -6y + 9) - 7 = 0

(x2 + 2y)2 - (y-3)2 = 7

(x2 +y - 3).(x2 +3y - 3) = 7

....

bn tự lập bảng nha

22 tháng 11 2018

Qua A kẻ đường thăng song song với BC cắt BE và CF lần lượt tại G và H
Xét tam giác EBC có:AG//BC
=>AEEC=AGBCAEEC=AGBC (hệ quả của định lí Ta-let)
Xét tam giác FBC có: AH//BC
=>AFBF=AHBCAFBF=AHBC (hệ quả của định lí Ta-let)
Xét tam giác IBM có: AG//BM
=>AGBM=AIIMAGBM=AIIM(hệ quả của định lí Ta-let)
Xét tam giác ICM có: AH//CM
=>AHCM=AIIMAHCM=AIIM(hệ quả của định lí Ta-let)
=>AGBM=AHMC(=IAIM)AGBM=AHMC(=IAIM)
=>AG=AH(vì BM=CM)
=>AGBC=AHBCAGBC=AHBC
=>AEEC=AFBF(=AGBC=AHBC)AEEC=AFBF(=AGBC=AHBC)
Xét tam giác ABC có: AEEC=AFBFAEEC=AFBF
=>EF//BC(theo định lí đảo Ta-let)

22 tháng 11 2018

Minh : trả lời với một tốc độ bàn thờ :v

22 tháng 11 2018

\(a_n=\frac{1}{\sqrt{n}\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

\(S_{2005}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{1+1}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2+1}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3+1}}+...+\)

\(\frac{1}{\sqrt{2005}}-\frac{1}{\sqrt{2005+1}}\)

\(S_{2005}=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{2005}}-\frac{1}{\sqrt{2006}}\)

\(S_{2005}=1-\frac{1}{\sqrt{2006}}\)

PS : ko chắc :v 

mem nào k sai chỉ hộ t cái :v 

22 tháng 11 2018

Đặt \(A=\left(x-2\right)\left(x-4\right)\left(x-5\right)\left(x-10\right)-54x^2\)

\(=\left[\left(x-2\right)\left(x-10\right)\right]\left[\left(x-4\right)\left(x-5\right)\right]-54x^2\)

\(=\left(x^2-12x+20\right)\left(x^2-9x+20\right)-54x^2\)

Đặt \(x^2-12x+20=t\)

Khi đó: \(A=t\left(t+3x\right)-54x^2\)

\(=t^2+3tx-54x^2\)

\(=t\left(t-6x\right)+9x\left(t-6x\right)\)

\(=\left(t-6x\right)\left(t+9x\right)\)

\(=\left(x^2-18x+20\right)\left(x^2-3x+20\right)\)