K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

Bài tập Tất cả

7 tháng 12 2017

Ta có: P = \(P=\left(1+\frac{1}{x}\right)\left(1-\frac{1}{y}\right).\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\) (HĐT số 3)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(x-1\right)\left(y-1\right)}{xy}\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{-x.-y}{xy}\)

= (1 + 1/x)(1 + 1/y) 
= 1 + 1/(xy) + (1/x + 1/y) = 1 + 1/(xy) + (x + y)/xy 
= 1 + 1/(xy) + 1/(xy) = 1 + 2/(xy) 
Áp dụng bđt: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
 \(\Rightarrow P\ge\frac{1+2}{\frac{1}{4}}=9\) 
Vậy PMin = 9 xảy ra \(\Leftrightarrow x=y=\) \(\frac{1}{2}\)

7 tháng 12 2017
giải nhanh giùm mk với!
7 tháng 12 2017

mk đang cần gấp

7 tháng 12 2017

bài này easy thôi:

ta có:\(\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0;\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0̸.\)với \(\forall a,b>0\)

\(\Rightarrow a-\sqrt{a}+\frac{1}{4}\ge0;b-\sqrt{b}+\frac{1}{4}\ge0\)

\(\Rightarrow\left(a-\sqrt{a}+\frac{1}{4}\right)+\left(b-\sqrt{b}+\frac{1}{4}\right)\ge0\)với \(\forall a,b>0\)

\(\Rightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}.\)

Mặt khác \(a+b\ge2\sqrt{ab}>0.\)

Nhân từng vế ta được:

\(\left(a+b\right)\left(\left(a+b\right)+\frac{1}{2}\right)\ge2\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right).\)

hay \(\left(a+b\right)^2+\frac{a+b}{2}\ge2a\sqrt{b}+2b\sqrt{a}.\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{4}\)

11 tháng 12 2017

1) Ta chứng minh tổng AB2 + CD2 không đổi. Thật vậy:

Gọi I, J lần lượt là trung điểm AB và CD.

Ta có \(OI\perp AB;OJ\perp AC\) 

Khi đó: \(AB^2+CD^2=\left(2AI\right)^2+\left(2CJ\right)^2=4\left(AI^2+CJ^2\right)\)

\(=4\left(OA^2-OI^2+OC^2-OJ^2\right)=4\left[2R^2-\left(OI^2+OJ^2\right)\right]\)

\(=4\left[2R^2-\left(OI^2+IK^2\right)\right]=4\left(2R^2-OK^2\right)\)

Do K cố định nên OK không đổi. Vậy \(4\left(2R^2-OK^2\right)\) không đổi hay AB2 + CD2 không đổi.

Khi đó ta có : 

\(S_{ACBD}=\frac{1}{2}.AB.CD\le\frac{1}{2}.\frac{1}{2}\left(AB^2+CD^2\right)\)

\(S_{ACBD}\le\frac{1}{4}.4\left(2R^2-OK^2\right)=2R^2-OK^2\)

Vậy \(maxS_{ACBD}=2R^2-OK^2\) khi AB = CD.

7 tháng 12 2017

em em em em!!!!!!!!!!!!

7 tháng 12 2017

Bạn học trường nào ?