Đơn giản biểu thức
tan2 x(2cos2x+sin2x-1)+cos2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=6\sqrt{27}-2\sqrt{75}-\frac{1}{2}\sqrt{300}\)
\(A=6\sqrt{3^2.3}-2\sqrt{5^2.3}-\frac{1}{2}\sqrt{10^2.3}\)
\(A=18\sqrt{3}-10\sqrt{3}-5\sqrt{3}\)
\(A=3\sqrt{3}\)
vậy \(A=3\sqrt{3}\)
\(B=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\) \(ĐKXĐ:x>0;x\ne1\)
\(B=\left[1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\)
\(B=\left[1+\sqrt{x}\right]\left[1-\sqrt{x}\right]\)
\(B=1-x\)
vậy \(B=1-x\)
\(C=\sqrt[3]{64}-\sqrt[3]{-125}+\sqrt[3]{216}\)
\(C=\sqrt[3]{4^3}-\sqrt[3]{\left(-5\right)^3}+\sqrt[3]{6^3}\)
\(C=4+5+6\)
\(C=15\)
vậy \(C=15\)
Cho mk giải câu a:
\(A=6\sqrt{27}-2\sqrt{75}-\frac{1}{2}\sqrt{300}\)
\(A=18\sqrt{3}-10\sqrt{3}-\frac{1}{2}10\sqrt{3}\)
\(A=18\sqrt{3}-10\sqrt{3}-10:2\sqrt{3}\)
\(A=18\sqrt{3}-10\sqrt{3}-5\sqrt{3}\)
\(A=\left(18-10-5\right)\sqrt{3}\)
\(A=3\sqrt{3}\)
Ta có:
\(\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)=\frac{x}{4}\left(\frac{1}{y}+\frac{1}{z}\right)\) (*)
Theo bất đẳng thức Cauchy, có: \(y+z\ge2\sqrt[]{yz}\)(1)
Và \(\frac{1}{y}+\frac{1}{z}\ge2.\frac{1}{\sqrt{yz}}=\frac{2}{\sqrt{yz}}\) (2)
Nhân (1) với (2) ta được: \(\left(y+z\right)\left(\frac{1}{y}+\frac{1}{z}\right)\ge2\sqrt{yz}.\frac{2}{\sqrt{yz}}=4\)
=> \(\frac{1}{y}+\frac{1}{z}\ge\frac{4}{y+z}\) Thay vào (*) ta được:
\(\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)=\frac{x}{4}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{x}{4}.\frac{4}{y+z}=\frac{x}{y+z}\)
=> \(\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)\ge\frac{x}{y+z}\left(đpcm\right)\)
\(P\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1+x^2y^2}{xy}}=2\sqrt{\frac{1}{xy}+xy}\)\(=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\ge2\sqrt{\frac{1}{2}+\frac{15}{4\left(x+y\right)^2}}=\sqrt{17}.\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}.\)
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(1+cos2a+\frac{1-cos2a}{2}-1\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(cos2a+\frac{1-cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(\frac{2cos2a+1-cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(\frac{1+cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{2}\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a+1+cos2a}{2}\)
=\(\frac{2}{2}\)=1