A=1/2+3/2+(3/2)^2+....+(3/2)^2023 và B=2(3/2)^2024 Tính A-B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xác suất thực nghiệm không phải mặt 4 chấm là:
\(\dfrac{40-13}{40}=\dfrac{27}{40}\)
a) O nằm giữa A và B nên:
\(AB=OA+OB\)
\(\Rightarrow OA=1,5+3=4,5\left(cm\right)\)
b) C nằm giữa O và B
\(OB=OC+BC\)
\(\Rightarrow BC=OB-OC\)
\(\Rightarrow BC=3-1,5=1,5\left(cm\right)\)
\(OC=BC=1,5\left(cm\right)\)
TH1: với \(a>b\)
\(\dfrac{a}{b}-1=\dfrac{a-b}{b}\)
\(\dfrac{a+n}{b+n}-1=\dfrac{a+n-\left(b+n\right)}{b+n}=\dfrac{a-b}{b+n}\)
Mà: \(b+n>b\)
\(\Rightarrow\dfrac{a-b}{b+n}< \dfrac{a-b}{b}\)
\(\Rightarrow\dfrac{a+n}{b+n}-1< \dfrac{a}{b}-1\)
\(\Rightarrow\dfrac{a+n}{b+n}< \dfrac{a}{b}\)
TH2: với \(a< b\)
\(1-\dfrac{a}{b}=\dfrac{b-a}{b}\)
\(1-\dfrac{a+n}{b+n}=\dfrac{\left(b+n\right)-\left(a+n\right)}{b+n}=\dfrac{b-a}{b+n}\)
Mà: \(b+n>b\)
\(\Rightarrow\dfrac{b-a}{b+n}< \dfrac{b-a}{b}\)
\(\Rightarrow1-\dfrac{a+n}{b+n}< 1-\dfrac{a}{b}\)
\(\Rightarrow\dfrac{a+n}{b+n}>\dfrac{a}{b}\)
TH3: \(a=b\)
\(\dfrac{a+n}{b+n}=\dfrac{a+n}{a+n}=1\)
\(\dfrac{a}{b}=\dfrac{a}{a}=1\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{a+n}{b+n}=1\)
\(S=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{512}\\ 2S=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{256}\\ 2S-S=\left(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{256}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{512}\right)\\ S=1-\dfrac{1}{512}=\dfrac{511}{512}\)
Lời giải:
$S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}$
$2S=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^8}$
$\Rightarrow 2S-S=1-\frac{1}{2^9}$
$\Rightarrow S=1-\frac{1}{2^9}$
\(S=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)\left(1-\dfrac{1}{5^2}\right)\left(1-\dfrac{1}{6^2}\right)...\left(1-\dfrac{1}{99^2}\right)\\ =\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{9801}\right)\\ =\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{9800}{9801}\\ =\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}...\dfrac{98.100}{99.99}\\ =\dfrac{1.2.3...98}{2.3.4...99}.\dfrac{3.4.5...100}{2.3.4...99}\\ =\dfrac{1}{99}.\dfrac{100}{2}=\dfrac{50}{99}\)
Lời giải:
\(S=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{98.100}{99^2}\\ =\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{98.100}{99^2}\\ =\frac{1.3.2.4.3.5....98.100}{2^2.3^2.4^2...99^2}\\ =\frac{(1.2.3...98)(3.4.5..100)}{(2.3.4...99)(2.3.4...99)}\)
\(=\frac{1.2.3...98}{2.3.4...99}.\frac{3.4.5..100}{2.3.4...99}=\frac{1}{99}.\frac{100}{2}=\frac{100}{198}\)
\(S=\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=\dfrac{101}{2}\)
\(S=1+\dfrac{5}{6}+\dfrac{11}{12}+\dfrac{19}{20}+...+\dfrac{649}{650}\)
\(=1+1-\dfrac{1}{6}+1-\dfrac{1}{12}+1-\dfrac{1}{20}+...+1-\dfrac{1}{650}\)
\(=\left(1+1+...+1\right)-\left(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{650}\right)\)
\(=\left(1+1+...+1\right)-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{25\cdot26}\right)\)
\(=25-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{25}-\dfrac{1}{26}\right)\)
\(=25-\left(\dfrac{1}{2}-\dfrac{1}{26}\right)=25-\dfrac{12}{26}=25-\dfrac{6}{13}=\dfrac{319}{13}\)
\(A=\dfrac{1}{2}+\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+...+\left(\dfrac{3}{2}\right)^{2023}\)
Đặt: \(C=\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+...+\left(\dfrac{3}{2}\right)^{2023}\)
\(\dfrac{3}{2}C=\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3+...+\left(\dfrac{3}{2}\right)^{2024}\)
\(\dfrac{3}{2}C-C=\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3+...+\left(\dfrac{3}{2}\right)^{2024}-\dfrac{3}{2}-\left(\dfrac{3}{2}\right)^2-...-\left(\dfrac{3}{2}\right)^{2023}\)
\(\dfrac{1}{2}C=\left(\dfrac{3}{2}\right)^{2024}-\dfrac{3}{2}\)
\(C=2\left(\dfrac{3}{2}\right)^{2024}-3\)
\(\Rightarrow A=\dfrac{1}{2}+2\left(\dfrac{3}{2}\right)^{2024}-3\)
\(=2\left(\dfrac{3}{2}\right)^{2024}-\dfrac{5}{2}\)
\(\Rightarrow A-B=2\left(\dfrac{3}{2}\right)^{2024}-\dfrac{5}{2}-2\left(\dfrac{3}{2}\right)^{2024}=-\dfrac{5}{2}\)