Mỗi cái đĩa đựng 1 trái thanh long, 1 quả cam, 1 quả táo. Biết rằng trái thanh long nặng 1phần2 Kg; quả cam nặng 1phần3 Kg; quả táo nặng 2phần8 Kg; Hỏi cái đĩa nặng bao nhiêu nếu khối lượng cả đĩa trái cây là 7phần4 Kg.
Mọi người làm sớm hộ mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=1+\frac{1}{99}+1+\frac{1}{98}+1+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{100}{99}+\frac{99}{98}+\frac{96}{95}\)
\(\Leftrightarrow\left(\frac{x-1}{99}-\frac{100}{99}\right)+\left(\frac{x-2}{98}-\frac{99}{98}\right)+\left(\frac{x-5}{95}-\frac{96}{95}\right)=0\)
\(\Leftrightarrow\frac{x-101}{99}+\frac{x-101}{98}+\frac{x-101}{95}=0\)
\(\Leftrightarrow\left(x-101\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\right)=0\)
\(\Leftrightarrow x-101=0\)
\(\Leftrightarrow x=101\)
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=1+\frac{1}{99}+1+\frac{1}{98}+1+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{100}{99}+\frac{99}{98}+\frac{96}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}-\frac{100}{99}-\frac{99}{98}-\frac{96}{95}=0\)
\(\Leftrightarrow\left(\frac{x-1}{99}-\frac{100}{99}\right)+\left(\frac{x-2}{98}-\frac{99}{98}\right)+\left(\frac{x-5}{95}-\frac{96}{95}\right)=0\)
\(\Leftrightarrow\frac{x-101}{99}+\frac{x-101}{98}+\frac{x-101}{95}=0\)
\(\Leftrightarrow\left(x-101\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\right)=0\)
Do \(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\ne0\)
Mà \(x-101=0\Leftrightarrow x=101\)
Vậy x = 101
Bài giải:
Số gà là:
150 x 60% = 90 ( con)
Số vịt là:
150 - 90 = 60 ( con )
Đáp số: 60 con vịt
Số gà là
150x60%=90(con)
Số vịt là
150-90=60(con)
Đáp số:60 con
\(\frac{x^2+1}{x}+\frac{x}{x^2+1}=\frac{5}{2}\)
ĐK: x khác 0.
Đặt: \(\frac{x^2+1}{x}=t\ne0\)
Ta có phương trình ẩn t: \(t+\frac{1}{t}=\frac{5}{2}\Leftrightarrow2t^2-5t+2=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=\frac{1}{2}\end{cases}}\)thỏa mãn
Với t = 2 ta có: \(\frac{x^2+1}{x}=2\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)thỏa mãn
Với t =1/2 ta có: \(\frac{x^2+1}{x}=\frac{1}{2}\Leftrightarrow x^2-\frac{1}{2}x+1=0\Leftrightarrow\left(x^2-2.x.\frac{1}{4}+\frac{1}{16}\right)+\frac{15}{16}=0\)
<=> \(\left(x-\frac{1}{4}\right)^2+\frac{15}{16}=0\)phương trình vô nghiệm
Vậy x = 1
\(\frac{x^2+1}{x}+\frac{x}{x^2+1}=\frac{5}{2}\)ĐKXĐ : \(x\ne0\)
\(\frac{2\left(x^2+1\right)^2}{x\left(x^2+1\right)2}+\frac{2x^2}{x\left(x^2+1\right)2}=\frac{5x\left(x^2+1\right)}{x\left(x^2+1\right)2}\)
Khử mẫu ta đc : \(2\left(x^2+1\right)^2+2x^2=5x\left(x^2+1\right)\)
\(2x^4+4x^2+2+2x^2=5x^3+5x\)
\(2x^4+6x^2+2=5x^3+5x\)
\(2x^4+6x^2+2-5x^3-5x=0\)
\(\left(2x^2-x+2\right)\left(x-1\right)^2=0\)
TH1 : \(2x^2-x+2=0\)
Ta có : \(\left(-1\right)^2-4.2.2=1-16=-15< 0\)
Nên phương trình vô nghiệm
TH2 : \(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy nghiệm phương trình là 1
\(Q=\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{4}{a^2+b^2}=\frac{4}{10}=\frac{2}{5}\)
Dấu "=" xảy ra <=> a = b và a^2 +b^2 = 10; a, b> 0 <=> a = b = \(\sqrt{5}\)
Chiều cao của hình tam giác đó là
756 x 2 : 42 = 36 (m)
Đáy phải tăng thêm là
90 x 2 : 36 = 5 (m)
Đáp số: 5 m
Tổng số cân nặng của 3 quả là :
1/2 + 1/3 + 2/8 = 13/12 ( kg )
Cái đĩa có cân nặng là :
7/4 - 13/12 = 5/4 ( kg )
Đáp số : 5/4 kg.
Nhớ kick mình nha ^ ^