Tìm x, biết:
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
Mọi người giúp mình với mình gắp lắm!!!!
like cho những bạn trả lời hợp lý!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
Số gà là:
150 x 60% = 90 ( con)
Số vịt là:
150 - 90 = 60 ( con )
Đáp số: 60 con vịt
Số gà là
150x60%=90(con)
Số vịt là
150-90=60(con)
Đáp số:60 con
\(\frac{x^2+1}{x}+\frac{x}{x^2+1}=\frac{5}{2}\)
ĐK: x khác 0.
Đặt: \(\frac{x^2+1}{x}=t\ne0\)
Ta có phương trình ẩn t: \(t+\frac{1}{t}=\frac{5}{2}\Leftrightarrow2t^2-5t+2=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=\frac{1}{2}\end{cases}}\)thỏa mãn
Với t = 2 ta có: \(\frac{x^2+1}{x}=2\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)thỏa mãn
Với t =1/2 ta có: \(\frac{x^2+1}{x}=\frac{1}{2}\Leftrightarrow x^2-\frac{1}{2}x+1=0\Leftrightarrow\left(x^2-2.x.\frac{1}{4}+\frac{1}{16}\right)+\frac{15}{16}=0\)
<=> \(\left(x-\frac{1}{4}\right)^2+\frac{15}{16}=0\)phương trình vô nghiệm
Vậy x = 1
\(\frac{x^2+1}{x}+\frac{x}{x^2+1}=\frac{5}{2}\)ĐKXĐ : \(x\ne0\)
\(\frac{2\left(x^2+1\right)^2}{x\left(x^2+1\right)2}+\frac{2x^2}{x\left(x^2+1\right)2}=\frac{5x\left(x^2+1\right)}{x\left(x^2+1\right)2}\)
Khử mẫu ta đc : \(2\left(x^2+1\right)^2+2x^2=5x\left(x^2+1\right)\)
\(2x^4+4x^2+2+2x^2=5x^3+5x\)
\(2x^4+6x^2+2=5x^3+5x\)
\(2x^4+6x^2+2-5x^3-5x=0\)
\(\left(2x^2-x+2\right)\left(x-1\right)^2=0\)
TH1 : \(2x^2-x+2=0\)
Ta có : \(\left(-1\right)^2-4.2.2=1-16=-15< 0\)
Nên phương trình vô nghiệm
TH2 : \(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy nghiệm phương trình là 1
\(Q=\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{4}{a^2+b^2}=\frac{4}{10}=\frac{2}{5}\)
Dấu "=" xảy ra <=> a = b và a^2 +b^2 = 10; a, b> 0 <=> a = b = \(\sqrt{5}\)
Chiều cao của hình tam giác đó là
756 x 2 : 42 = 36 (m)
Đáy phải tăng thêm là
90 x 2 : 36 = 5 (m)
Đáp số: 5 m
\(\frac{x}{2}=\frac{y}{5}\)và \(3x-y=5\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{y}{5}=\frac{3x-y}{3.2-5}=\frac{5}{1}=5\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=5\\\frac{y}{5}=5\end{cases}\Rightarrow\hept{\begin{cases}x=10\\y=25\end{cases}}}\)
chia tam giác thành đều thành các tam giác đều nhỏ hơn ,hỏi có ít nhất là bao nhiêu tam giác đều nhỏ
Sửa đề : \(\frac{x}{4}=\frac{y}{7}\) và \(x-y=9\)
Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{x}{4}=\frac{y}{7}=\frac{x-y}{4-7}=\frac{9}{-3}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=-3\\\frac{y}{7}=-3\end{cases}\Rightarrow\hept{\begin{cases}x=-12\\y=-21\end{cases}}}\)
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=1+\frac{1}{99}+1+\frac{1}{98}+1+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{100}{99}+\frac{99}{98}+\frac{96}{95}\)
\(\Leftrightarrow\left(\frac{x-1}{99}-\frac{100}{99}\right)+\left(\frac{x-2}{98}-\frac{99}{98}\right)+\left(\frac{x-5}{95}-\frac{96}{95}\right)=0\)
\(\Leftrightarrow\frac{x-101}{99}+\frac{x-101}{98}+\frac{x-101}{95}=0\)
\(\Leftrightarrow\left(x-101\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\right)=0\)
\(\Leftrightarrow x-101=0\)
\(\Leftrightarrow x=101\)
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=1+\frac{1}{99}+1+\frac{1}{98}+1+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{100}{99}+\frac{99}{98}+\frac{96}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}-\frac{100}{99}-\frac{99}{98}-\frac{96}{95}=0\)
\(\Leftrightarrow\left(\frac{x-1}{99}-\frac{100}{99}\right)+\left(\frac{x-2}{98}-\frac{99}{98}\right)+\left(\frac{x-5}{95}-\frac{96}{95}\right)=0\)
\(\Leftrightarrow\frac{x-101}{99}+\frac{x-101}{98}+\frac{x-101}{95}=0\)
\(\Leftrightarrow\left(x-101\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\right)=0\)
Do \(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\ne0\)
Mà \(x-101=0\Leftrightarrow x=101\)
Vậy x = 101