Mình làm nhạc nightcore bạn nào đam mê vào coi https://youtu.be/ufrApudgPjY
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT=\frac{a^4}{a\left(a^2+ab+b^2\right)}+\frac{b^4}{b\left(b^2+bc+c^2\right)}+\frac{c^4}{c\left(c^2+ca+a^2\right)}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)
\(\ge\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}=\frac{a+b+c}{3}=VP\)
Áp dụng BĐT cô-si, ta có
\(a^2+\frac{1}{a^2}\ge2\sqrt{a^2.\frac{1}{a^2}}=2\)
Tương tự, ta có \(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge6\)
dấu= xảy ra <=>\(a^2=b^2=c^2=1\)
=>\(a^{2012}=b^{2012}=c^{2012}=1\Rightarrow a^{2012}+b^{2012}+c^{2012}=3\left(ĐPCM\right)\)
^_^
sửa giả thiết là \(\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3=3\left(abc\right)^2\)
Và Áp dụng BĐT cô-si, ta có \(\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3\ge3\left(abc\right)^2\)
dấu = xảy ra <=>a=b=c>0
Thay vào thì \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\) (ĐPCM)
^_^
Ta có các số sau chữ số hàng chục gấp 3 lần chữ số hàng đơn vị :
31 ; 62 ; 93
Nếu ab = 31 thì ab - ba = 18 ( thỏa mãn )
Nếu ab = 62 thì ab - ba = 36 ( loại )
Nếu ab = 93 thì ab - ba = 54 ( loại )
Vậy số cần tìm là 31
Ta có các số sau chữ số hàng chục gấp 3 lần chữ số hàng đơn vị :
31 , 62 , 93
Nếu ab = 31 thì ab - ba = 18 ( thỏa mãn )
Nếu ab = 62 thì ab - ba = 36 ( loại )
Nếu ab = 93 thì ab - ba = 54 ( loại )
Vậy số cần tìm là 31
Áp dụng bất đẳng thức x2+y2≥2xyx2+y2≥2xy nên ta có x2+y2+xy≥3xyx2+y2+xy≥3xy
Mà x2+y2+xy=x2y2≥0x2+y2+xy=x2y2≥0 nên suy ra x2y2+3xy≤0⟺−3≤xy≤0x2y2+3xy≤0⟺−3≤xy≤0
Vì x,yx,y nguyên nên xyxy nguyên, vậy nên xy∈{−3,−2,−1,0}xy∈{−3,−2,−1,0}
Trường hợp xy=−3xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)(−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)(−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)(−1,1),(1,−1)
Trường hợp xy=0xy=0 ta tìm được nghiệm (0,0)(0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1)(0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm
sorry @Thắng Hoàng mình nhầm đề, phải là
\(x^2y^2-xy=x^2+2y^2\)
sao bn đăng nhìu thế chỗ này là chỗ học tập mà sao bn lại đăng những thứ thế những cái đó lúc nào rỗi bn hãy đăng nhé
mình không quan tâm những gì về bạn, nhưng bạn vào đây bạn phải chấp hành luật. Nếu bạn vẫn tiếp tục spam hoặc gửi câu hỏi chống chế mà vẫn có nội dung spam thì coi chừng