Cho các hàm số f1(x)=x , f2(x)=-2x , f3(x)=1 , f4(x)=5 , f5(x)=1/x ,f6(x)=x^2
Trong các hàm số trên hàm số nào có tính chất f(-x)=-f(x)
NHANH NHA 4H 30 NỘP RỒI!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có :
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(\Rightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
\(\Rightarrow\frac{0}{a}=\frac{0}{b}=\frac{0}{c}=\frac{0}{d}\)
\(\Rightarrow\orbr{\begin{cases}a=b=c=d\\a\ne b\ne c\ne d\end{cases}}\)(loại)
Nếu a + b + c + d \(\ne\)0
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\)
=> a = b = c = d (đpcm)
Ta có: \(\frac{x}{4}=\frac{y}{6}=\frac{z}{8}\) => \(\frac{2x}{8}=\frac{y}{6}=\frac{3z}{24}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{8}=\frac{y}{6}=\frac{3z}{24}=\frac{2x+y-3z}{8+6-24}=\frac{20}{-10}=-2\)
=> \(\hept{\begin{cases}\frac{x}{4}=-2\\\frac{y}{6}=-2\\\frac{z}{8}=-2\end{cases}}\) => \(\hept{\begin{cases}x=-2.4=-8\\y=-2.6=-12\\z=-2.8=-16\end{cases}}\)
Vậy ...
\(\frac{5^{102}\cdot9^{1000}}{3^{2018}\cdot25^{50}}=\frac{5^{102}\cdot3^{2000}}{3^{2018}\cdot5^{100}}=\frac{5^2}{3^{18}}\)
A B C N N G H M K
GT, Kl bạn tự viết nha!
Chứng minh
Xét \(\Delta ABC\)có:
BM là đường trung tuyến ( M là trung điểm AC)
CN là đường trung tuyến ( N là trung điểm AB)
Mà G là giao điểm của BM và CN
Suy ra: G là trọng tâm của \(\Delta ABC\)
\(\Rightarrow\)+) \(BG=\frac{2}{3}BM\) ( t/c trọng tâm) \(\Rightarrow GM=\frac{1}{3}BM\) mà \(GM=\frac{1}{2}HG\)\(\Rightarrow HG=\frac{2}{3}BM\)
\(\Rightarrow BG=HG\)
+) \(CG=\frac{2}{3}CN\) ( t/c trọng tâm ), tương tự như trên ta cm được CG = GK (cm như BG =HG)
Xét \(\Delta KGB\) và \(\Delta CGH\) có:
BG = HG (cmt)
CG = GK (cmt)
\(\widehat{KGB}=\widehat{CGH}\) (2 góc đối đỉnh)
Suy ra: \(\Delta KGB=\Delta CGH\) (c.g.c) (đpcm)
~ Học tốt ~
Làm hơi lâu đó nhaa, nhớ t.i.c.k nếu đúng!
Ta có: \(A=3+3^2+3^3+...+3^{2008}\)
\(3A=3^2+3^3+3^4+...+3^{2009}\)
\(3A-A=3^{2009}-3\)
Hay \(2A=3^{2009}-3\)
\(\Rightarrow2A+3=3^x\)
\(\Rightarrow\left(3^{2009}-3\right)+3=3^x\)
\(\Rightarrow3^{2009}=3^x\)
\(\Rightarrow x=2009\)
Hok tốt nha^^
Có A=3+32+...+32008
=>3A=32+33+...+32009
=>3A-A=2A=32009-3
Thay 2A vào 2A+3=3x
Ta được: 32009-3+3=3x
=>32009=3x
=>x=2009
Vậy..