K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

biến thành phương trình ước số là đơn giản nhất

1.trừ từng vế 2 pt có \(x+y-xy=1\)

\(< =>\left(x-1\right)\left(y-1\right)=0\)......

2.Cộng từng vế 2 pt có

\(\sqrt{x}+\sqrt{y}+\sqrt{x+1}+\sqrt{y+1}=2\)

mà đk là x;y\(\ge0\)nên vt\(\ge2\)

dấu = xr <=>x=y=0

Đặt \(x+\frac{1}{x}=a\)\(y+\frac{1}{y}=b\)

ta cm được\(a+b=\left(x+y\right)\left(1+\frac{1}{xy}\right)\) 

\(a^2+b^2+4=\left(x^2+y^2\right)\left(1+\frac{1}{x^2y^2}\right)\)

vậy hệ pt trở thành\(\hept{\begin{cases}a+b=5\\a^2+b^2+4=9\end{cases}}\)

từ đó tìm đc a và b rồi x và y

nhầm chút !!!!phải là\(a^2+b^2-4\)mới đúng!