K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021
Công chúa thủy tế
15 tháng 12 2018

\(2009^{2011}+2011^{2009}=\left(2009^{2011}+1\right)+\left(2011^{2009}-1\right)\)

Ta có: \(a^n+b^n⋮\left(a+b\right)\) với n là số lẻ.

\(a^n-b^n⋮\left(a-b\right)\forall n\inℕ^∗\)

Nên \(2009^{2011}+1⋮\left(2009+1\right),2011^{2009}-1⋮\left(2011-1\right)\)

Vậy \(2009^{2011}+1+2011^{2009}-1⋮2010\Rightarrow2009^{2011}+2011^{2009}⋮2010\)

15 tháng 12 2018

Tại sao an+bn chia hết a+b

15 tháng 12 2018

\(D=-\left(x^2+8x+4^2\right)+21\)

\(D=-\left(x+4\right)^2+21\le21\)

Dấu = xảy ra khi x+4=0

=> x=-4. Vậy max D=21 khi x=-4

\(E=-\left(x^2-4x+2^2\right)+5=-\left(x-2\right)^2+5\le5\)

Dấu = xảy ra khi x-2=0

=> x=2. Vậy max E=5 khi x=2

15 tháng 12 2018

\(D=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+4^2-21\right)=\)\(-\left(x+4\right)^2+21\)\(\le21\)

Dấu \("="\)xảy ra \(\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

Vậy GTLN của D là 21 khi x = - 4 

\(E=4x-x^2+1=-\left(x^2-4x-1\right)\)\(=-\left(x^2-4x+2^2-5\right)=-\left(x-2\right)^2+5\)\(\le5\)

Dấu \("="\)xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy GTLN của E là 5 khi x = 2

15 tháng 12 2018

\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)

\(C=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(C=\left(x^2+5x\right)^2-36\)

Ta có: \(\left(x^2+5x\right)^2\ge0\forall x\)

\(\Rightarrow\left(x^2+5x\right)^2-36\ge-36\forall x\)

\(C=-36\Leftrightarrow\left(x^2+5x\right)^2=0\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy \(C_{min}=-36\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

8 tháng 8 2020

C = ( x - 1 )( x + 3 )( x + 2 )( x + 6 ) 

C = [( x - 1 )( x + 6 )][( x + 3 )( x + 2 )]

C = ( x2 + 5x - 6 )( x2 + 5x + 6 )

Đặt a = x2 + 5x 

=> C = ( a - 6 )( a + 6 ) = a2 - 36 

\(a^2\ge0\forall a\Rightarrow a^2-36\ge-36\)

Dấu " = " xảy ra <=> a2 = 0 => a = 0

<=> x2 + 5x = 0

<=> x( x + 5 ) = 0

<=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy CMin = -36, đạt được khi x = 0 hoặc x = -5