\(\frac{\left(x^2+x+1\right)\sqrt{x^2-x+1}+\left(x^2-x+1\right)\sqrt{x^2+x+1}}{\sqrt{x^2+x^2+1}}\div\frac{1}{\sqrt{x^2+1+x}-\sqrt{x^2-x+1}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Không mất tính tổng quát giả sử
\(1< a\le b\le c\)
Ta có:
\(\left(b^2+2\right)\left(c^2+2\right)-\left[\frac{\left(b+c\right)^2}{4}+2\right]^2\)
\(=\frac{-\left(b-c\right)^2}{16}\left(b^2+c^2+6bc-16\right)\le0\)
\(\Rightarrow\left(b^2+2\right)\left(c^2+2\right)\le\left[\frac{\left(b+c\right)^2}{4}+2\right]^2\)
Đặt \(c+b=2x\)
\(\Rightarrow VT\le\left(a^2+2\right)\left[\frac{\left(b+c\right)^2}{4}+2\right]^2\)
\(=\left[\left(6-2x\right)^2+2\right]\left(x^2+2\right)^2\)
Ta cần chứng minh
\(\left[\left(6-2x\right)^2+2\right]\left(x^2+2\right)^2-216\le0\)
\(\Leftrightarrow2\left(x-2\right)^2\left(2x^4-4x^3+3x^2-20x-8\right)\le0\)
(cái cuối cùng e tự chứng minh nha)

Áp dụng BĐT AM-GM ta có:
\(\frac{2}{3}a^2+\frac{3}{2}b^2\ge2ab\)
\(\frac{b^2}{2}+2c^2\ge2bc\)
\(3c^2+\frac{a^2}{3}\ge2ac\)
\(\Rightarrow2A\le a^2+2b^2+5c^2=22\Rightarrow A\le11\)
\("="\Leftrightarrow a=3;b=2;c=1\)

Nếu gồm 2 chữ số giống nhau thì viết được 81 số, còn nếu gồm 2 chữ số khác nhau thì viết được 72 số