\(\frac{x-10}{1994}\) + \(\frac{x-8}{1996}\) + \(\frac{x-6}{1998}\) + \(\frac{x-4}{2000}\) + \(\frac{x-2}{2002}\) = 0
Giải phương trình trên
Các bn giúp mik với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)
\(=\)\(ab\left(a+b\right)+bc\left(a+b+c-a\right)+ca\left(c+a\right)+2abc\)
\(=\)\(ab\left(a+b\right)+bc\left(a+b\right)+bc\left(c-a\right)+ca\left(c+a\right)+2abc\)
\(=\)\(\left(a+b\right)\left(ab+bc\right)+bc\left(c-a\right)+ca\left(c+a\right)+2abc\)
\(=\)\(b\left(a+b\right)\left(c+a\right)+bc\left(c-a\right)+ca\left(c+a\right)+2abc\)
\(=\)\(b\left(ac+a^2+bc+ab\right)+b\left(c^2-ca\right)+ca\left(c+a\right)+2abc\)
\(=\)\(b\left(ca+a^2+bc+ab+c^2-ca\right)+ca\left(c+a\right)+2abc\)
\(=\)\(b\left(a^2+ab+bc+c^2\right)+ca\left(c+a\right)+2abc\)
\(=\)\(b\left(a^2+2ca+c^2+ab+bc\right)+ca\left(c+a\right)\)
\(=\)\(b\left[\left(c+a\right)^2+b\left(c+a\right)\right]+ca\left(c+a\right)\)
\(=\)\(b\left(c+a\right)\left(a+b+c\right)+ca\left(c+a\right)\)
\(=\)\(\left(c+a\right)\left(ab+b^2+bc+ca\right)\)
\(=\)\(\left(c+a\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]\)
\(=\)\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
...
cách này ngắn hơn nè:
\(ab.\left(a+b\right)+bc.\left(b+c\right)+ac.\left(a+c\right)+2abc\)
\(=a^2b+ab^2+b^2c+bc^2+a^2c+ac^2+abc+abc\)
\(=\left(abc+ac^2\right)+\left(abc+b^2c\right)+\left(a^2b+ab^2\right)+\left(c^2a+c^2b\right)\)
\(=ac.\left(a+b\right)+bc.\left(a+b\right)+ab.\left(a+b\right)+c^2.\left(a+b\right)\)
\(=\left(a+b\right).\left(ac+bc+ab+c^2\right)\)
\(=\left(a+b\right).\left[c\left(a+c\right)+b.\left(a+c\right)\right]=\left(a+b\right).\left(c+b\right).\left(a+c\right)\)
a) \(4\left(x^2-y^2\right)+4x+1\)
\(=4x^2-4y^2+4x+1\)
\(=\left[\left(2x\right)^2+2\cdot2x\cdot1+1^2\right]-\left(2y\right)^2\)
\(=\left(2x+1\right)^2-\left(2y\right)^2\)
\(=\left(2x-2y+1\right)\left(2x+2y+1\right)\)
b) \(x^2+1-x^3-x^2\)
\(=1-x^3\)
\(=\left(1-x\right)\left(1+x+x^2\right)\)
\(a^2+b^2+c^2=\left(a+b+c\right)^2-2ab-2bc-2ca=0-2\left(ab+bc+ca\right)=1\)
\(\Leftrightarrow\)\(ab+bc+ca=\frac{-1}{2}\)
\(\Leftrightarrow\)\(\left(ab+bc+ca\right)^2=\left(\frac{-1}{2}\right)^2\)
\(\Leftrightarrow\)\(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=\frac{1}{4}\)
\(\Leftrightarrow\)\(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Leftrightarrow\)\(a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\) ( do \(a+b+c=0\))
\(\Rightarrow\)\(M=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(M=1^2-2.\frac{1}{4}=1-\frac{1}{2}=\frac{1}{2}\)
...
Sửa để\(\frac{x-10}{1994}+\frac{x-8}{1996}+\frac{x-6}{1998}+\frac{x-4}{2000}+\frac{x-2}{2002}=5\)
\(\Leftrightarrow\frac{x-10}{1994}-1+\frac{x-8}{1996}-1+\frac{x-6}{1998}-1+\frac{x-4}{2000}-1+\frac{x-2}{2002}-1=0\)
\(\Leftrightarrow\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1998}+\frac{x-2004}{2000}+\frac{x-2004}{2002}=0\)
\(\Leftrightarrow\left(x-2004\right)\left(\frac{1}{1994}+\frac{1}{1996}+...+\frac{1}{2002}\right)=0\)
|_____________A__________________|
Vì A > 0 nên x - 2004 = 0
=> x = 2004
Vậy ..........
đề đúng mà cậu ==