K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

A B C Q P E Do không đủ chỗ á nên nên mình Không viết được. Cx cắt AQ lại E nha Hình cảnh chỉ mang t/c minh họa.

Theo đề: \(P\)nằm trong \(\Delta\Rightarrow\widehat{APB}>\widehat{ACB}\)

Dựng góc: \(\widehat{ACx}=\widehat{APB}\), kéo dài \(AQ\)cắt \(Cx\)tại \(E\Rightarrow E\)nằm phía ngoài của \(\Delta ABC\)

\(\Rightarrow\Delta CAE~\Delta PAB\)

\(\Rightarrow\frac{CA}{PA}=\frac{CE}{PB}=\frac{AE}{AB};\widehat{PAB}=\widehat{QAC}\)

\(\Rightarrow\widehat{QAB}=\widehat{CAP}\)

\(\Rightarrow\Delta ABE~\Delta APC\)

\(\Rightarrow\frac{AB}{AP}=\frac{AE}{AC}=\frac{BE}{PC};\widehat{AEC}=\widehat{PBA}\)

Từ: \(\widehat{PBA}=\widehat{QBC}\Rightarrow\widehat{AEC}=\widehat{QBC}\Rightarrow QBEC\) nội tiếp.

Theo định lí Ptôlêmê ta có:

\(\Rightarrow BC.QE=QB.CE+QC.BE\Rightarrow BC\left(AE-QA\right)=QB.CE+QC.BE\)

\(\Rightarrow BC.AE=BC.QA+QB.CE+QC.BE\)\((*)\)

Từ các đẳng thức trên ta suy ra: \(CE=\frac{AC.PB}{PA};BE=\frac{AB.PC}{PA};AE=\frac{AC.AB}{PA}\)

Thay vào \((*)\) \(\Rightarrow\frac{PA.QA}{BA.AC}+\frac{PB.QB}{AB.BC}+\frac{PC.QC}{BC.AC}=1\left(đpcm\right)\)

25 tháng 2 2018

Tự vẽ hình lấy chứ hình nó khó vẽ trên này lắm thông cảm 

 a) P và Q là tâm đường tròn nội tiếp các tam giác đồng dạng AHB và CHA nên

\(\frac{HP}{HQ}=\frac{AB}{AC}\)nên \(\Delta HPQ~\Delta ABC\left(c-g-c\right)\)

b) Từ câu a suy ra \(\widehat{HPQ}=\widehat{C}\)mà \(\widehat{C}=\widehat{A_1}\)

Nên \(\widehat{HPQ}=\widehat{A_1}\)( 1 )

Tứ giác HPKQ có \(\widehat{PHQ}=\widehat{PKQ}=90^o\)nên là tứ giác nội tiếp, suy ra \(\widehat{HPQ}=\widehat{HKP}\)( 2 )

Từ (1) VÀ (2) suy ra \(\widehat{A_1}=\widehat{HKP}\)do đó KP // AB. Chứng minh tương tự, KQ // AC.

c) Ta có : \(\widehat{C}=\widehat{HKP}=\widehat{MKP}\)tự chứng minh \(\widehat{MKP}=\widehat{M_1}\)(sử dụng kết quả ở câu b).

d) Ta có : \(\widehat{A_1}=\widehat{M_1}\left(=\widehat{C}\right)\)nên KM = KA. Tương tự KP =KA. Do đó năm điểm A, M, P, Q, N thuộc đường tròn (K; KA).

e) Từ câu a suy ra \(\widehat{HQP}=\widehat{C}\)nên HQEC là tứ giác nội tiếp, do đó \(\widehat{QEA}=\widehat{QHC}=45^o\)

Tam giác ADE có : \(\widehat{E}=45^o\)

\(\Rightarrow\) ADE là tam giác vuông cân.

25 tháng 2 2018

à câu cuối còn một cách nữa :)

Chứng minh \(BP\perp AQ\)tương tự ta cũng chứng minh \(CQ\perp AP\)

\(\Rightarrow\)\(AO\perp PQ\)(O là giao điểm của BP và CQ). Tam giác ADE có AO là tia phân giác góc A và \(AO\perp DE\)

\(\Rightarrow\)Tam giác AED vuông cân ( đpcm )

25 tháng 2 2018

8 vien

26 tháng 2 2021

Mik ko chắc nữa , chắc là 8 viên.

1. Tổng các hệ số của đa thức là: 12004.22005=22005

2.Cần chứng minh x4+x3+x2+x+1=0 vô nghiệm.

Nhận thấy x = 1 không là nghiệm của phương trình .

Nhân cả hai vế của pt cho (x−1)≠0 được : 

(x−1)(x4+x3+x2+x+1)=0⇔x5−1=0⇔x=1(vô lí)

Vậy pt trên vô nghiệm.

25 tháng 2 2018

1. Tổng các hệ số của đa thức là: 

12014 . 22015 = 22015

2 . Cần chứng minh. 

\(x4 + x3 + x2 + x + 1 = 0\)

Vô nghiệm. 

Ta nhận thấy \(x + 1 \) không là nghiệm của phương trình. 

Nhân cả hai vế của phương trình cho:

\(( x - 1 ) \) \(\ne\) \(0\) được :

\(( x-1). (x4+x3+x2+x+1)=0\)

\(\Leftrightarrow\)\(5x-1=0\) \(\Leftrightarrow\) \(x = 1\)

Vô lí. 

Vậy phương trình trên vô nghiệm. 

24 tháng 2 2018

câu hỏi là gì ?

24 tháng 2 2018

xin lỗi, mình đánh thiếu. Chứng minh: P=1