Tìm 2 số tự nhiên bt tổng của chúng bằng 2015 và nếu lấy số lớn chia cho số nhỏ đc thương là 2 và dư 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.nhan xet
voi a thuoc Z
\(\left[\sqrt{a^2}\right]=\left[\sqrt{a^2+1}\right]=...=\left[\sqrt{a^2+2a}\right]\)
do do\(\left[\sqrt{a^2}\right]+\left[\sqrt{a^2+1}\right]+...+\left[\sqrt{a^2+2a}\right]=\frac{2a\left(2a+1\right)}{2}=a\left(2a+1\right)\)
thay a=1 cho den 10
tu tinh ra 825
2. voi a1,a2,a3 duong nhân từng vế của hai phương trình\(\left(a_1+a_2+a_3\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}\right)=9\)
áp dụng phương pháp bdt không chặt thì pt trên xảy ra <=>\(a_1=a_2=a_3=1\)
1.
tu pt 2 ta co
dk: y(y+1) khac 0
x(x+1)=72/y(y+1)
the vao 1 ta co
\(\frac{72}{y\left(y+1\right)}+y\left(y+1\right)=18\)
<=>\(y^2\left(y+1\right)^2-18y\left(y+1\right)+81-9=0\)
<=>\(\left[y\left(y+1\right)-9\right]^2=3\)
tu giai tiep
Có : x^2+y^2+z^2 >= xy+yz+zx
<=> 3xyz >= xy+yz+zx
Chia cả 2 vế bpt cho xyz được :
3 >= 1/x + 1/y + 1/z
Lại có : (x+y+z).(1/x+1/y+1/z) >= 9 => x+y+z >= 3
Xét : x^2/y+2 + y+2/9 + x/3 >= \(3\sqrt[3]{\frac{x^2}{y+2}.\frac{y+2}{9}.\frac{x}{3}}\) = x
Tương tự : y^2/z+2 + z+2/9 + y/3 >= y
z^2/x+2 + x+2/9 + z/3 >= z
=> x^2/y+2 + y^2/z^2 + z^2/x+2 >= x+y+z - x+2/9 - y+2/9 - z+2/9 - x/3 - y/3 - z/3
= 5/9.(x+y+z) - 2/3
>= 5/9 . 3 - 2/3 = 1
=> ĐPCM
Dấu "=" xảy ra <=> x=y=z=1
Tk mk nha
\(\frac{x^2}{y+2}+\frac{y^2}{z+2}+\frac{z^2}{x+2}\ge1\)(*)
có \(\frac{x^2}{y+2}+\frac{y+2}{9}\ge2\sqrt{\frac{x^2}{y+2}\cdot\frac{y+2}{9}}=\frac{2}{3}x\Rightarrow\frac{x^2}{y+2}\ge\frac{6x-y-2}{9}\)
tương tự có \(\frac{y^2}{z+2}\ge\frac{6y-z-2}{9};\frac{z^2}{x+2}\ge\frac{6z-x-2}{9}\)
Đặt vế trái cả (*) là P. Cộng các bất đẳng thức trên theo vế ta được \(P\ge\frac{5\left(x+y+z\right)-6}{9}\)
Lại có \(\frac{\left(x+y+z\right)^3}{9}\ge3xyz,x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)
từ giả thiết suy ra \(\frac{\left(x+y+z\right)^3}{9}\ge\frac{1}{3}\left(x+y+\right)^2\Leftrightarrow x+y+z\ge3\)
Do đó P>=1
Gọi số lớn là a , số nhỏ là b ( a , b > 0 )
Theo bài ra ta có :
a + b = 2015 ( 1 )
a : b = 2 dư 11 => a = 2b + 11
Thay vào ( 1 ) ta được :
a + b = 2b + 11 + b = 2015
=> 2b + b + 11 = 2015
=> 3b + 11 = 2015
=> 3b = 2015 - 11
=> 3b = 2004
=> b = 2004 : 3
=> b = 668
Như vậy , số nhỏ là 668
Vậy số lớn là :
2015 - 668 = 1347
Đ/s : số lớn : 1347
số bé : 668
Chúc bạn học giỏi !!! Tham khảo cách giải của mk nhé ^_^
=>