Cho M = 1 :(\(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\))
a) Rút gọn M
b) So sánh M với 3
c) Tìm giá trị nhỏ nhất của M
d) Tìm x thuộc Z để M > 4
e) Tính giá trị của M tại x = \(\frac{1}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Đoàn Thanh Kim Kim - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo ở link này nhé :)
Do a,b,c là độ dài các cạnh của tam giác nên luôn dương.
Do đó: \(VP>0\)
Nhân 2 vào mỗi vễ,điều cần c/m tương đương với:
\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)(Chuyển vế)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng) (đpcm)
Dấu "=" xảy ra khi a = b = c
1.
Ta có: \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2ac-1}{2017+c}\)
\(=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)
Đặt \(\hept{\begin{cases}2015+a=x\\2016+b=y\\2017+c=z\end{cases}}\)
\(P=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)
\(=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)
\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}\left(Cosi\right)\)
Dấu "=" <=> x=y=z => \(\hept{\begin{cases}a=673\\b=672\\c=671\end{cases}}\)
Vậy Min P=6 khi a=673; b=672; c=671
Câu 1 thử cộng 3 vào P xem
Rồi áp dụng BDT Cauchy - Schwars : a^2/x + b^2/y + c^2/z ≥(a + b + c)^2/(x + y + z)
\(2x^2+y^2+6=4\left(x-y\right)\)
\(\Rightarrow2x^2+y^2+6-4x+4y=0\)
\(\Rightarrow2x^2-4x+2+y^2+4y+4=0\)
\(\Rightarrow2\left(x-1\right)^2+\left(y+2\right)^2=0\)
Do VT ko âm
\(\Rightarrow\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)
\(B=\frac{x^2}{\left(x+2000\right)^2}\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
\(\left(x-1\right)^3-x\left(x+1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
\(\Leftrightarrow\left(x^3-3x^2+3x-1\right)-x\left(x^2+2x+1\right)=10x-5x^2-11x-22\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=-x-5x^2-22\)
\(\Leftrightarrow-5x^2+2x-1=-5x^2-x-22\)
\(\Leftrightarrow-5x^2+5x^2+2x+x=1-22\)
\(\Leftrightarrow3x=-21\Leftrightarrow x=-7\)
Vậy \(x=-7\)
\(\left(x-1\right)^3-x\left(x+1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
\(\Leftrightarrow\left(x^3-3x^2+3x-1\right)-x\left(x^2+2x+1\right)=10x-5x-11x-22\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=-x-5x^2-22\)
\(\Leftrightarrow-5x^2+2x-1=-5x^2-x-22\)
\(\Leftrightarrow-5x^2+5x^2+2x+x=1-22\)
\(\Leftrightarrow3x=-21\Leftrightarrow x=-7\)
Vậy \(x=-7\)
\(a,M=1:\left(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right)\)
\(=1:\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}+\frac{-1}{x-1}\right]\)
\(=1:\left[\frac{\left(x^2+2\right)+\left(x+1\right)\left(x-1\right)+\left(-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)
\(=1:\left[\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)
\(=1:\left[\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left[\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)
\(=1:\frac{x}{x^2+x+1}=\frac{x^2+x+1}{x}\)
Giải các câu khác giúp mình với