Cho đường tròn (O; R), dây cung BC cố định (BC < R), A là điểm di động trên cung lớn BC, (A không
trùng B và C). Gọi AD, BE, CF là các đường cao của tam giác ABC; EF cắt BC tại P, qua D kẻ đường thẳng song
song với EF cắt AC tại Q và cắt AB tại R.
1. Chứng minh tứ giác BQCR là tứ giác nội tiếp.
2. Gọi M là trung điểm cạnh BC. Chứng minh rằng M thuộc đường tròn ngoại tiếp tam giác DEF.
3. Chứng minh hai tam giác EPM và DEM là hai tam giác đồng dạng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ngủ đi , bây giờ chẳng bạn nào giải đâu !!!
Chúc học giỏi !!!
\(\hept{\begin{cases}4x^2-16xy+4y^2=4\\y^2-3xy=4\end{cases}}\)
\(\Rightarrow4x^2+3y^2-13xy=0\)
\(\Leftrightarrow\left(y-4x\right)\left(3y-x\right)=0\)
\(\hept{\begin{cases}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x^2+xy\right)^2=2x+9\\2\left(x^2+xy\right)=6x+x^2+6\end{cases}}\)
Đặt \(x^2+xy=a\)
\(\Rightarrow\hept{\begin{cases}a^2=2x+9\\2a=x^2+6x+6\end{cases}}\)
Làm nốt
1/ Theo đề bài thì \(x+y=1\)
\(\Rightarrow x,y< 1\)
Ta chứng minh
\(\frac{\left(1-y\right)}{1-\left(1-y\right)^2}+\frac{y}{1-y^2}-\frac{4}{3}\ge0\)
\(\Leftrightarrow4y^4-8y^3-7y^3+11y-3\le0\)
\(\Leftrightarrow\left(2y-1\right)^2\left(y^2-y-3\right)\le0\) đúng
cho x,y,z tm xy+xz+yz=1. cmr
\(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\)
Cmr gì bạn
Ghi đủ đề rùi nhắn tin cho mk biết là đã sửa rùi mk làm cho
Áp dụng BĐt bu-nhi-a, ta có
\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\le\sqrt{\left(x^2+y^2+z^2\right)\left(6-x^2-y^2-z^2\right)}\)
Áp dụng BĐt cô-si, ta có
\(\sqrt{\left(x^2+y^2+z^2\right)\left(6-x^2-y^2-z^2\right)}\le\frac{x^2+y^2+z^2+6-x^2-y^2-z^2}{2}=3\)
=> VT <=VP
Dấu = xảy ra là của BĐT cô-si và bu-nhi-a,
Bạn tự tìm nhá, t nhác làm tiếp lắm
^^