Cho A =\(\frac{x^3+2x^2+3x+x^2\sqrt{4-x^2}+6}{\sqrt{x+3}+3}:\frac{x^2\left(\sqrt{x+2}+\sqrt{2-x}\right)+3\sqrt{x+2}}{2\sqrt{x+3}-3\sqrt{x+2}-\sqrt{x^2+5x+6}}\)
Rút gọn a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(7P+1=a^3\Rightarrow7P=\left(a-1\right)\left(a^2+a+1\right)\)
vì P là số nguyên tố => 7P là tích 2 số nguyên tố
=>\(\left(a-1\right)\left(a^2+a+1\right)\) là tích 2 số nguyên tố
nếu 1 trong 2 biểu thức a-1 hoặca^2+a+1 là hợp số => số còn lại =1
xét a^2+a+1 là hợp số => a-1=1 => a=2, thay vào tìm P
xét a-1 là hợp số => a^2+a=1=1 => a=0 hoặc a=-1, thay vào tìm P
nếu cả 2 số là số nguyên tố , ta cx xét 2 TH
TH1: a-1=7
TH2: a^2+a+1=7
=> ....
Tôi nghĩ vậy, nếu sai thì thôi :V
Hợp số là một số tự nhiên có thể biểu diễn thành tích của hai số tự nhiên khác nhỏ hơn nó. Một định nghĩa khác tương đương: hợp số là số chia hết cho các số khác ngoài 1 và chính nó.[1][2]
Mọi số nguyên dương bất kỳ hoặc là 1, hoặc là số nguyên tố, hoặc là hợp số.
Định lý cơ bản của số học nói rằng mọi hợp số đều phân tích được dưới dạng tích các số nguyên tố và cách biểu diễn đó là duy nhất nếu không tính đến thứ tự của các thừa số.[3][4][5][6][7].
bn tham khảo trang https://www.slideshare.net/bluebookworm06_03/tng-hp-h-pt
Ta có để phương trình có nghiệm thì:
\(\Delta=k^2-4\ge0\)
\(\Leftrightarrow k\ge2;k\le-2\)
Theo đề thì ta có
\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\ge3\)
\(\Leftrightarrow x_1^4+x_2^4-3\left(x_1x_2\right)^2\ge0\)
\(\Leftrightarrow\left(\left(x_1+x_2\right)^2-2x_1x_2\right)^2-5x_1x_2\ge0\)
\(\Leftrightarrow\left(4k^2-4\right)^2-5.4^2\ge0\)
Làm nốt
\(\left|k\right|\ge2\)
\(P=\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left(\frac{\left(x_1+x_2\right)^2}{x_1x_2}-2\right)^2-2\\ \)
\(P=\left(\frac{\left(2k\right)^2}{4}-2\right)^2-2=\left(k^2-2\right)^2-2\)
\(P\ge3\Rightarrow\left(k^2-2\right)^2\ge5\Leftrightarrow\orbr{\begin{cases}k^2-2\le-\sqrt{5}\left(l\right)\\k^2-2\ge\sqrt{5}\left(n\right)\end{cases}}\)
\(\orbr{\begin{cases}k\le-\sqrt{2+\sqrt{5}}\\k\ge\sqrt{2+\sqrt{5}}\end{cases}}\)