K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2019

Giả sử ΔABCΔABC có 3 đường cao là AD,BE,CFAD,BE,CF.

Ta có: 

ΔHAE∼ΔCAD(g−g)⇒HACA=AEADΔHAE∼ΔCAD(g−g)⇒HACA=AEAD

⇒HA.HBCA.CB=AE.HBAD.CB=SAHBSABC⇒HA.HBCA.CB=AE.HBAD.CB=SAHBSABC

CMTTCMTT, ta có:

HA.HBCA.CB+HB.HCAB.AC+HC.HABC.BA=SAHBSABC+SAHCSABC+SBHCSABC=1(dpcm)

22 tháng 1 2019

Giả sử ΔABCΔABC có 3 đường cao là AD,BE,CFAD,BE,CF.

Ta có: 

ΔHAE∼ΔCAD(g−g)⇒HACA=AEADΔHAE∼ΔCAD(g−g)⇒HACA=AEAD

⇒HA.HBCA.CB=AE.HBAD.CB=SAHBSABC⇒HA.HBCA.CB=AE.HBAD.CB=SAHBSABC

CMTTCMTT, ta có:

HA.HBCA.CB+HB.HCAB.AC+HC.HABC.BA=SAHBSABC+SAHCSABC+SBHCSABC=1(dpcm)

22 tháng 1 2019

Các công thức tổng quát cho bộ số (x; y; z) hay còn gọi là bộ Pythagore:
Công thức 1:
x
=
n
,
y
=
1
2
(
n
2

1
)
,
z
=
1
2
(
n
2
+
1
)
, với n là số tự nhiên lẻ.

Công thức 2:
x
=
4
n
,
y
=
4
n
2

1
,
z
=
4
n
2
+
1
Công thức 3:
x
=
t
(
a
2

b
2
)
,
y
=
2
t
a
b
,
z
=
t
(
a
2
+
b
2
)
trong đó, t, a, b là các số nguyên dương bất kì sao cho a > b, a và b không có ước nguyên tố chung và có tính chẵn lẻ khác nhau.
Từ đó, ta có thể giải quyết được bài toán trên. 

22 tháng 1 2019

Áp dụng BĐT AM-GM,ta có:

\(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+1\ge2y\end{cases}}\)

\(\Rightarrow\frac{1}{x^2+2y^2+3}\le\frac{1}{2xy+2y+2}\)

Chứng minh tương tự,ta có:

\(\frac{1}{y^2+2z^2+3}\le\frac{1}{2yz+2z+2}\)

\(\frac{1}{z^2+2x^2+3}\le\frac{1}{2zx+2x+2}\)

Cộng vế theo vế của các bất đẳng thức,ta có được:

\(VT\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)

Mặt khác,ta lại có được:

\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\)

\(=\frac{1}{xy+y+1}+\frac{xy}{xy+y+1}+\frac{y}{xy+y+1}\)

\(=1\)

\(\Rightarrow\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}\le\frac{1}{2}\cdot1=\frac{1}{2}\left(đpcm\right)\)

23 tháng 1 2019

Forever Miss You thiếu dấu "=" xảy ra khi nào:v

22 tháng 1 2019

tae tae ơi khó quá hổng hiểu j hết trơn

22 tháng 1 2019

mình làm câu cuối thôi nhé , những câu còn lại bạn tự làm đi , dễ mà :)))) chỉ cần quy đồng mẫu lên là được 

\(=\frac{x+1}{58}+1+\frac{x+2}{57}+1=\frac{x+3}{56}+1+\frac{x+4}{55}\)

\(=\frac{x+59}{58}+\frac{x+59}{57}=\frac{x+59}{56}+\frac{x+59}{55}\)

\(=\frac{x+59}{58}+\frac{x+59}{57}-\frac{x+59}{56}-\frac{x+59}{55}=0\)

\(=\left(x+59\right)\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)=0\)

Vì \(\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)\) luôn khác 0 

<=> x + 59 = 0 

<=> x=-59 

22 tháng 1 2019

Gọi chiều cao AH là x :

Áp dụng công thức tính diện tích tam giác ta được :

\(\frac{1}{2}\).BC.AH = 120

\(\frac{1}{2}\).20.x =120

    10x =120

       x = 12

 =) AH = 12 cm

b) Xét tam giác ABC có :

M là trung điểm của AB

 N là trung điểm của AC

=) MN là đường trung bình của tam giác ABC

=) MN // BC ; MN=\(\frac{1}{2}\)BC

Xét tứ giác BMNC có

MN // BC

=) Tứ giác BMNC là hình thanh

Giả sử MN cắt AH tại K

Xét tam giác ABH có :

M là trung điểm của AB

MK // BH

=) K là trung điểm của AH

Do K là trung điểm của AH

=) AK=KH=\(\frac{AH}{2}\)=\(\frac{12}{2}\)=6

Ta có MN=\(\frac{BC}{2}\)=10

Diện tích hình thang BMNC là

\(\frac{1}{2}\).KH.(MN+BC)= \(\frac{1}{2}\).6.(10+20)

                            = 90 cm2

22 tháng 1 2019

A B C H M N

22 tháng 1 2019

Sorry bạn mình không có=)))

Nhưng chúc bạn thi tốt và đạt được điểm cao nha ~!!!!!!!

22 tháng 1 2019

Có toán hình nhé bạn!