Cho hai cung chứa góc \(120^o\)dựng trên đoạn AB . Biết AB = a . Tính diện tích hinh vuông có đỉnh trên hai cung chứa góc đó (theo a) ?
( Các bạn giúp mình nha ^^ )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(7\left(x^2+xy+y^2\right)=39\left(x+y\right)\) nên \(x^2+xy+y^2⋮39\) \(x+y⋮7\)
Đặt \(x^2+xy+y^2=39k;x+y=7k\) \(\left(k\in N\right)\) vì \(x^2+xy+y^2\ge0\)
\(\Rightarrow xy=\left(x+y\right)^2-\left(x^2+xy+y^2\right)=49k^2-39k\)
Theo Viet x,y là nghiệm của phương trình \(a^2-49k^2a+49k^2-39k=0\)
Phương trình có 2 nghiệm khi \(\Delta=49k^2-4.49k^2+4.39k=156k-147k^2=k\left(156-147k\right)\ge0\)
Vì k>0 nên \(156>147k\), vì k nguyên nên k=1
Do đó ta có x + y = 7,xy=10 nên áp dụng viet, ta giải được (x,y)=(2;5);(5;2)
Đó là giá trị nguyên cần tìm
Bài 2:
ΔOBC cân tại O
mà OK là trung tuyến
nên OK vuông góc BC
Xét tứ giác CIOK có
góc CIO+góc CKO=180 độ
=>CIOK là tứ giác nội tiếp
Bài 3:
Xét tứ giác EAOM có
góc EAO+góc EMO=180 độ
=>EAOM làtứ giác nội tiếp
d, Điểm D là điểm gì vậy bạn ?
Mk nghĩ điểm D là giao của AH với BC
Tam giác ABC có :
BE vuông góc với AC ; CF vuông góc với AB
=> H là trực tâm tam giác ABC
=> AH vuông góc với BC hay AD vuông góc với BC
Có tứ giác BFEC nt => góc AFE = góc ACB (1)
C/m được tứ giác DHBF nt => góc BFD = góc BHD (2)
Lại có : góc BHD = góc BCA ( cùng phụ với góc EBC ) (3)
Từ (1),(2),(3) => góc AFE = góc BED
=> góc DFH = góc EFH
=> FH là phân giác góc EFD
Tương tự : EH là phân giác góc FED
=> H là tâm đường tròn nội tiếp tam giác EFD
=> H cách đều 3 cạnh tam giác EFD
đề bài khỏi chép
\(A=\left[\frac{x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\frac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]:\frac{\sqrt{x}-1}{\sqrt{x}-2}\)
\(A=\left[\frac{x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right]\) \(:\frac{\sqrt{x}-1}{\sqrt{x}-2}\)
\(A=\frac{x-\sqrt{x}+2-x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(A=\frac{-2\sqrt{x}+2}{\sqrt{x}+1}.\frac{1}{\sqrt{x}-1}\)
\(A=\frac{-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{-2}{\sqrt{x}+1}\)
vậy....
ĐK: 0 =< 1 # 0
a) \(\text{P}=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}1}\right).\frac{\left(1-x\right)^2}{2}\)
\(\text{P}=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(1-x\right)^2}{2}\)
\(\text{P}=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}-1\right)^3}{2}\)
\(\text{P}=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(\text{P}=-\sqrt{x}\left(1-\sqrt{x}\right)\)
b) \(\text{P}=\sqrt{x}\left(\sqrt{x}-1\right)\)
Để P > 0 thì \(\hept{\begin{cases}\sqrt{x}>0\\1-\sqrt{x}>0\end{cases}\Rightarrow0< x< 1}\)
c) \(\text{P}=-x+\sqrt{x}=-\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
\(\Rightarrow MAX_P=\frac{1}{4}\text{ khi }x=\frac{1}{4}\)
Đặt \(\hept{\begin{cases}\sqrt{a^2+b^2}=x\\\sqrt{b^2+c^2}=y\\\sqrt{c^2+a^2}=z\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x,y,z>0\\x+y+z=1\end{cases}}\)
Và \(\hept{\begin{cases}a^2=\frac{x^2+z^2-y^2}{2}\\b^2=\frac{x^2+y^2-z^2}{2}\\c^2=\frac{y^2+z^2-x^2}{2}\end{cases}}\) và \(\hept{\begin{cases}b+c\le\sqrt{2\left(b^2+c^2\right)}=\sqrt{2}y\\a+b\le\sqrt{2}x\\c+a\le\sqrt{2}z\end{cases}}\)
\(\Rightarrow VT\ge\frac{1}{2\sqrt{2}}\left(\frac{x^2+z^2-y^2}{y}+\frac{x^2+y^2-z^2}{2z}+\frac{y^2+z^2-x^2}{x}\right)\)
\(\ge\frac{1}{2\sqrt{2}}\left(\frac{2\left(x+y+z\right)^2}{x+y+z}-\left(x+y+z\right)\right)\)
\(=\frac{1}{2\sqrt{2}}\left(x+y+z\right)=\frac{1}{2\sqrt{2}}\)