K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2020

địt mẹ mày

11 tháng 3 2018

Vân dụng bất đẳng thức \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\Rightarrow\frac{1}{a+3b}+\frac{1}{b+2c+a}\ge\frac{4}{\left(a+3b\right)+\left(b+2c+a\right)}=\frac{2}{a+2b+c}\)

\(\Rightarrow\frac{1}{b+3c}+\frac{1}{c+2a+b}\ge\frac{4}{\left(b+3c\right)+\left(c+2b+a\right)}=\frac{2}{b+2c+a}\)

\(\Rightarrow\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{4}{\left(c+3a\right)+\left(a+2b+c\right)}=\frac{2}{c+2a+b}\)

Cộng tất cả các vế bất đẳng thức trên và rút gọn ta có bất đẳng thức \(\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\le\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\)

Đẳng thức xảy ra khi: \(\hept{\begin{cases}a+3b=b+2c+a\\b+3c=c+2a+b\Leftrightarrow a=b=c\\c+3a=a+2b+c\end{cases}}\)

11 tháng 3 2018

Ta áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Áp dụng vào bài toán ta có : 

\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{a+3b+a+b+2c}=\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

\(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{4}{b+3c+2a+b+c}=\frac{4}{2a+2b+4c}=\frac{2}{a+b+2c}\)

\(\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{4}{c+3a+a+2b+c}=\frac{4}{4a+2b+2c}=\frac{2}{2a+b+c}\)

Cộng vế theo vế của bất đẳng thức ta được 

\(\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\ge\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\)

=> ĐPCM

11 tháng 3 2018

a) Gọi các kích thước hìh chữ nhật là x, y, z thỳ x, y, z > 0 vs x + y + z = k (ko đổi). Áp dụng bất đẳng thức Cô-si cho ba số dương ta có:

\(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{k}{3}\)

Do đó: \(\text{V}=xyz\le\left(\frac{k}{3}\right)^3\)(ko đổi). 

Vậy: V đạt giá trị lớn nhất khj và chỉ khi BĐT này trở thành đẳng thức hay là x = y = z, tức là khi hình chữ nhật trở thành hình lập phương.

b) Gọi 3 kích thước của hình hộp là x, y, z (ĐK)
Áp dụng bất đẳng thức Cô - si cho 3 số dương ta có : 

\(x+y+z\ge3\sqrt[3]{xyz}\)

Từ đây ta có :
x + y + z nhỏ nhất là = \(3\sqrt[3]{xyz}\)

Bất đẳng thức Cô - si xảy ra dấu "=" khi : x = y = z.

11 tháng 3 2018

Mọi người ko cần giúp mk nữa đâu vì mk làm được rùi nha !

11 tháng 3 2018

Ai giải được cho mười nghìn

11 tháng 3 2018

Áp dụng bđt : (x+y)^2 < = 2.(x^2+y^2) thì :

(a+b)^2 < = 2.(a^2+b^2) = 2 . 2 = 4

=> a+b < = 2

Áp dụng bđt cosi ta có : 2a.b < = a^2+b^2 = 2

<=> a.b < = 1

Có : 

P = \(\sqrt{ab}\). ( \(\sqrt{a.\left(a+8\right)}+\sqrt{b.\left(b+8\right)}\))

   < = 1 . \(\frac{\sqrt{9a.\left(a+8\right)}+\sqrt{9b.\left(b+8\right)}}{3}\)

Áp dụng bđt : x.y < = (x+y)^2/4 thì :

P < = \(\frac{9a+a+8+9b+b+8}{2.3}\)

       = \(\frac{10.\left(a+b\right)+16}{6}\)

     < = \(\frac{10.2+16}{6}\)=  6

Dấu "=" xảy ra <=> a=b=1

Vậy ..............

Tk mk nha

11 tháng 3 2018

thay 28 vào pt nhân tử rồi cối dưới mẫu

11 tháng 3 2018

Ta có : 

\(2m^2\ge0\) ( với mọi m ) 

\(\Rightarrow\)\(2m^2+2\ge2\)

Dấu "=" xảy ra khi \(2m^2=0\)

\(\Rightarrow\)\(m^2=0\)

\(\Rightarrow\)\(m=0\)

Vậy \(P_{min}=2\) khi \(m=0\)

11 tháng 3 2018

bang 0 do 

 sao ngu the