K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2018

mày bị ngu à bố trẫm súc sinh vật học

12 tháng 3 2018

ko cần trả lời đang làm j

12 tháng 3 2018

a , vì bd và ce là đường cao của tam giác abc nên ta có góc bdc = 90 độ , góc  ceb = 90 độ

xét tứ giác bced có góc bdc = góc ceb 

=> tứ giác bced là tứ giác nội tiếp ( hai góc này cùng nhìn cạnh bc dưới 1 góc 90 độ ) 

b , ab.ed=ad.bc=> ab/bc=ad/ed

xét tam giác abc và tam giác ade 

góc a chung

góc ade = góc ebc ( tính chất tứ giác nội tiếp góc ngoài bằng góc trong đối diện với góc đó

=> tam giác abc đồng dạng với ade 

=> ab/bc = ad/de 

=> ab.ed = ad.bc 

c , còn phần này thì sorry bạn minh dùng nháp vẽ hình nên không có compa làm phần c 

13 tháng 3 2018

Ta có \(\Delta'=\left(m+1\right)^2-2m=m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiệm phân biệt. Áp dụng hệ thức Viet ta có : \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=2m\end{cases}}\)

Khi đó ta có \(P=3x_1^2+3x_2^2-4x_1-4x_2=3\left(x_1^2+x_2^2\right)-4\left(x_1+x_2\right)\)

 \(=3\left[\left(x_1+x_2\right)^2-2x_1.x_2\right]-4\left(x_1+x_2\right)\)

\(=3\left[4\left(m+1\right)^2-2.2m\right]-4.2.\left(m+1\right)\)

\(=3\left(4m^2+8m+4-4m\right)-8m-8\)

\(=3\left(4m^2+8m+4-4m\right)-8m-8=12m^2+4m+4\)

\(=12\left(m^2+\frac{1}{3}m+\frac{1}{36}\right)+\frac{11}{3}=12\left(m+\frac{1}{6}\right)^2+\frac{11}{3}\ge\frac{11}{3}\forall m\)

Vậy minP = 11/3 khi m = -1/6.

18 tháng 5 2018

cho tam giác ABC ( AB<AC) có ba góc nhọc nội tiếp đường tròn tâm (O) và D là hình chiếu của B trên AO sao cho D nằm giữa A và O. gọi M là trung điểm của BC, N là giao điểm của BD và AC, F là giao điểm của MD và AC, E là giao điểm thứ hai của BD với (O), H là giao điểm của BF và AD.

1/ chứng minh tứ giác BDOM nội tiếp và góc MOD + NAE=180. 

2/ chứng minh DF //CE.

3/ chứng minh CA là tia phân giác của góc BCE

4/ Chứng minh HN vuông góc với AB