K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

A cách B nửa vòng sân tức 750m.  

A: 15 vòng - 60 phút --> 1 phút - 0,25 vòng = 375m

B: 20 vòng - 60 phút --> 1 phút - 1/3 vòng = 500m

Thời gian để B đuổi kị A là: 750: (500-375) = 6 phút

Tức khi đó A đã đi được: 6x375 = 2250m

29 tháng 1 2019

a, Xét x=0 không phải nghiệm pt chia 2 vế cho x, đặt t= x+1/x từ đó suy ra phương trình ẩn t, giải ra ta được các phương trình ẩn x rồi ra x. 

b, Tách đa thức thành tích của đơn thức (x+1) và 1 đa thức bậc 4 rồi làm như câu a,. 

29 tháng 1 2019

\(2x^4+3x^3-x^2+3x+2=0\)

\(\Leftrightarrow2x^4+4x^3-x^3-2x^2+x^2+2x+x+2=0\)

\(\Leftrightarrow2x^3.\left(x+2\right)-x^2.\left(x+2\right)+x.\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x^3-x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x^3+x^2-2x^2-x+2x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x+1\right).\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}}\)

\(\text{Vì }x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy phương trình có nghiệm \(S=\left\{-2,-\frac{1}{2}\right\}\)

28 tháng 1 2019

Mấy bài này khó :( nghĩ được bài nào làm bài đấy nhé,  bạn thông cảm

a, Dùng phương pháp kẹp 

Do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(\Rightarrow x^3+x^2+x+1>x^3\)

\(\Rightarrow y^3>x^3\)

\(\Rightarrow y>x\)(1)

Xét hiệu \(\left(x+2\right)^3-y^3=x^3+6x^2+12x+8-y^3\)

                                              \(=x^3+6x^2+12x+8-x^3-x^2-x-1\)

                                              \(=5x^2+11x+7\)

                                              \(=5\left(x+\frac{11}{10}\right)^2+\frac{19}{20}>0\forall x\)

\(\Rightarrow\left(x+2\right)^3>y^3\)

\(\Rightarrow x+2>y\)(2)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow x< y< x+2\)

Mà \(x;y\inℤ\Rightarrow y=x+1\)

Thế vào pt ban đầu đc \(x^3+x^2+x+1=\left(x+1\right)^3\)

                            \(\Leftrightarrow x^3+x^2+x+1=x^3+3x^2+3x+1\)

                           \(\Leftrightarrow2x^2+2x=0\)

                          \(\Leftrightarrow2x\left(x+1\right)=0\)

                            \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(tm\right)}\)

*Với x = 0 => y= 1

*Với x = -1 => y = 0

Vậy ...

29 tháng 1 2019

Ailamfgiups mình caaub,c, d với

29 tháng 1 2019

Tớ sẽ chứng minh đề sai:

\(\hept{\begin{cases}x+y=1\\xy=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=1\\2xy=2\end{cases}}\Rightarrow x^2+4xy+y^2=3\) (Cộng theo vế)

Thay xy = 1 vào: \(x^2+y^2+4=3\Leftrightarrow x^2+y^2=-1\)

Mà \(x^2;y^2\ge0\forall x;y\)

Vậy tính A "=" niềm tin à? vì không có gì x,y nào thỏa mãn để tính cả!

29 tháng 1 2019

Mẫu bài này khó khử ~v

Ta có: \(\frac{1}{a^3\left(b+c\right)}+\frac{a^3\left(b+c\right)}{4}\ge2\sqrt{\frac{1}{a^3\left(b+c\right)}.\frac{a^3\left(b+c\right)}{4}}=2.\frac{1}{2}=1\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế,ta có:

\(VT+\frac{\left[a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\right]}{4}\ge3\) (*)

Ta sẽ c/m: \(a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\ge6\) (**)

Thật vậy,áp dụng BĐT Cô si,ta có: \(VT_{\left(^∗^∗\right)}\ge2a^2.a\sqrt{bc}+2b^2.b\sqrt{ac}+2c^2.c\sqrt{ab}\) 

\(=2a^2\sqrt{abc.a}+2b^2\sqrt{abc.b}+2c^2\sqrt{abc.c}\)

\(=2a^2\sqrt{a}+2b^2\sqrt{b}+2b^2\sqrt{c}\) (***)

Đặt \(\sqrt{a}=t;\sqrt{b}=u;\sqrt{c}=v\).và \(t.u.v=1\)

(***) trở thành: \(2t^5+2u^5+2v^5=2\left(t^5+u^5+v^5\right)\)

Ta có: \(t^5+u^5+v^5+1+1\ge5\sqrt[5]{t^5u^5v^5.1.1}=5\)

Suy ra \(t^5+u^5+v^5\ge5-2=3\)

Suy ra \(2\left(t^5+u^5+v^5\right)\ge2.3=6\) (****)

Kết hợp (**) ; (***) và (****) suy ra \(a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\ge6\)

Thay vào (1) suy ra \(VT+\frac{\left[a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\right]}{4}\ge VT+\frac{6}{4}\ge3\)

Suy ra \(VT\ge\frac{3}{2}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1

Bài dài quá,có gì sai sót mong bạn thông cảm.Vì khi bài dài,mình làm có thể sẽ bị ngược dấu. :v

26 tháng 5 2019

Chết mọe,hình như em làm sai rồi thì phải :(,Sr ạ!

28 tháng 1 2019

Đặt x = 2a; y = -5b.

Áp dụng đẳng thức Bunhiacopski ta có:

\(\left(3x+y\right)^2\le\left(x^2+y^2\right)\left(9+1\right)\Rightarrow x^2+y^2\ge\frac{1}{10}\)

Hay: \(4a^2+25b^2\ge\frac{1}{10}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{3}{x}=\frac{1}{y}\Leftrightarrow3y=x\Leftrightarrow-15b=2a\Leftrightarrow6a=-45b\)

\(\Leftrightarrow b=-\frac{1}{50};a=\frac{3}{20}\)