K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2024

Diện tích của các hình là: 

\(\left(2+2\right)\times\left(3+3\right)=24\left(dm^2\right)\)

Diện tích phần màu trắng là:

\(\dfrac{1}{2}\times2\times3+\dfrac{1}{2}\times2\times3+\dfrac{1}{2}\times2\times3+\dfrac{1}{2}\times2\times3=12\left(dm^2\right)\)

Diện tích phần tô màu là:

\(24-12=12\left(dm^2\right)\)

ĐS: ...

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{2}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{2}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}-\dfrac{2}{y}=2\\\dfrac{3}{x}+\dfrac{2}{y}=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{4}{x}-\dfrac{2}{y}+\dfrac{3}{x}+\dfrac{2}{y}=2+5=7\\\dfrac{3}{x}+\dfrac{2}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{x}=7\\\dfrac{2}{y}=5-\dfrac{3}{x}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1\\\dfrac{2}{y}=5-\dfrac{3}{1}=5-3=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

=>Chọn C

a: ta có: \(\widehat{MNS}=\widehat{HNQ}\)(hai góc đối đỉnh)

mà \(\widehat{HNQ}=60^0\)

nên \(\widehat{MNS}=60^0\)

b: Ta có: \(\widehat{QNH}=\widehat{PMN}\left(=60^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên PI//QS

=>MP//NQ

c: ta có: MP//NQ

KP\(\perp\)MP

Do đó: KP\(\perp\)QN

d: ta có: MI//SN

=>\(\widehat{MIS}+\widehat{S}=180^0\)(hai góc trong cùng phía)

=>\(\widehat{S}+100^0=180^0\)

=>\(\widehat{S}=80^0\)

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\y>=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2\sqrt{x}+\sqrt{y}=5\\3\sqrt{x}-\sqrt{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x}+\sqrt{y}+3\sqrt{x}-\sqrt{y}=5+1\\2\sqrt{x}+\sqrt{y}=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5\sqrt{x}=6\\\sqrt{y}=5-2\sqrt{x}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=\dfrac{6}{5}\\\sqrt{y}=5-2\cdot\dfrac{6}{5}=5-\dfrac{12}{5}=\dfrac{13}{5}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{36}{25}\\y=\dfrac{169}{25}\end{matrix}\right.\)

=>Chọn B

10 tháng 7 2024

\(\left\{{}\begin{matrix}2\sqrt{x}+\sqrt{y}=5\\3\sqrt{x}-\sqrt{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=6\\2\sqrt{x}+\sqrt{y}=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=\dfrac{6}{5}\\\dfrac{12}{5}+\sqrt{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{36}{25}\\\sqrt{y}=5-\dfrac{12}{5}=\dfrac{13}{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{36}{25}\\y=\left(\dfrac{13}{5}\right)^2=\dfrac{169}{25}\end{matrix}\right.\)

=> Chọn B

10 tháng 7 2024

a) Ta có: 

\(VT=\left(a+b\right)^2-4ab=\left(a^2+2ab+b^2\right)-4ab\\ =a^2+2ab+b^2-4ab=a^2-2ab+b^2\\ =\left(a-b\right)^2=VP\)

=> Đpcm 

b) Ta có:

\(VT=\left(a-b\right)^3=\left[-\left(b-a\right)\right]^3=\left[\left(-1\right)\cdot\left(b-a\right)\right]^3\\ =\left(-1\right)^3\left(b-a\right)^3=\left(-1\right)\cdot\left(b-a\right)^3=-\left(b-a\right)^3=VP\)

=> Đpcm  

c) Ta có: 

\(\left(n+2\right)^2-n^2=\left(n^2+4n+4\right)-n^2\\ =n^2+4n+4-n^2=4n+4=4\left(n+1\right)⋮4\forall n\in N\) 

=> Đpcm 

a: \(\left(a+b\right)^2-4ab\)

\(=a^2+2ab+b^2-4ab\)

\(=a^2-2ab+b^2=\left(a-b\right)^2\)

b: \(\left(a-b\right)^3=\left[-\left(b-a\right)\right]^3=-\left(b-a\right)^3\)

c: \(\left(n+2\right)^2-n^2=\left(n+2+n\right)\left(n+2-n\right)\)

\(=2\left(2n+2\right)=4\left(n+1\right)⋮4\)

e: \(2^{5x-4}=64\)

=>\(2^{5x-4}=2^6\)

=>5x-4=6

=>5x=10

=>x=10/5=2

f: \(2^{3x+2}=4^{x+6}\)

=>\(2^{3x+2}=2^{2x+12}\)

=>3x+2=2x+12

=>3x-2x=12-2

=>x=10

g: \(4^x=5\cdot4^3-4\cdot4^3\)

=>\(4^x=4^3\)

=>x=3

h: \(4^{5x-3}=16^{2x-1}\)

=>\(4^{5x-3}=\left(4^2\right)^{2x-1}=4^{4x-2}\)

=>5x-3=4x-2

=>5x-4x=-2+3

=>x=1

i: \(5^{7x-2}=5^{3x+10}\)

=>7x-2=3x+10

=>4x=12

=>x=4

l: \(\dfrac{16}{2^x}=2\)

=>\(2^x=\dfrac{16}{2}=8=2^3\)

=>x=3

m: \(\dfrac{\left(-3\right)^x}{81}=-27\)

=>\(\left(-3\right)^x=\left(-3\right)^3\cdot\left(-3\right)^4=\left(-3\right)^7\)

=>x=7

 

10 tháng 7 2024

\(e)2^{5x-4}=64\\ \Rightarrow2^{5x-4}=2^6\\ \Rightarrow5x-4=6\\ \Rightarrow5x=6+4=10\\ \Rightarrow x=\dfrac{10}{5}\\ \Rightarrow x=2\\ f)2^{3x+2}=4^{x+6}\\ \Rightarrow2^{3x+2}=\left(2^2\right)^{x+2}\\ \Rightarrow2^{3x+2}=2^{2x+4}\\ \Rightarrow3x+2=2x+4\\ \Rightarrow3x-2x=4-2\\ \Rightarrow x=2\\ g)4^x=5\cdot4^3-4\cdot4^3\\ \Rightarrow4^x=4^3\cdot\left(5-4\right)\\ \Rightarrow4^x=4^3\\ \Rightarrow x=3\\ h)4^{5x-3}=16^{2x-1}\\ \Rightarrow4^{5x-3}=\left(4^2\right)^{2x-2}\\ \Rightarrow4^{5x-3}=4^{4x-4}\\ \Rightarrow5x-3=4x-4\\ \Rightarrow5x-4x=-4+3\\ \Rightarrow x=-1\\ i)5^{7x-2}=5^{3x+10}\\ \Rightarrow7x-2=3x+10\\ \Rightarrow7x-3x=10+2\\ \Rightarrow4x=12\\ \Rightarrow x=12:4\\ \Rightarrow x=3\)

10 tháng 7 2024

Bài 9:

Bán kính miệng giếng là:

\(1,6:2=0,8\left(m\right)\)

Diện tích miệng giếng tính cả thành giếng: 

\(0,8+0,3=1,1\left(m\right)\) 

Diện tích miệng giếng là:

\(0,8\times0,8\times3,14=2,0096\left(m^2\right)\)

Diện tích miếng giếng cả thành giếng là:

\(1,1\times1,1\times3,14=3,7994\left(m^2\right)\)

Diện tích thành giếng là:

\(3,7994-2,0096=1,7898\left(m^2\right)\)

ĐS: ...

10 tháng 7 2024

\(1.\left\{{}\begin{matrix}-x+3y=-10\\x-5y=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2y=6\\x-5y=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{6}{-2}=-3\\x-5\cdot\left(-3\right)=16\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-3\\x+15=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-3\\x=16-15=1\end{matrix}\right.\\ 2.\left\{{}\begin{matrix}2x+y=7\\-x+4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=7\\-2x+8y=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=7\\9x=27\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+y=7\\x=\dfrac{27}{9}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\cdot3+y=7\\x=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=7-6=1\\x=3\end{matrix}\right.\) 

\(3.\left\{{}\begin{matrix}3x-5y=-18\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-5y=-18\\3x+6y=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-3\\x+2\cdot\left(-3\right)=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-3\\x=5+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-3\\x=11\end{matrix}\right.\\ 4.\left\{{}\begin{matrix}4x+3y=-6\\2x-5y=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+3y=-6\\4x-10y=32\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13y=-38\\2x-5y=16\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-38}{13}\\2x-5\cdot\dfrac{-38}{13}=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-38}{13}\\2x+\dfrac{190}{13}=16\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-38}{13}\\2x=16-\dfrac{190}{13}=\dfrac{18}{13}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-38}{13}\\x=\dfrac{18}{13}:2=\dfrac{9}{13}\end{matrix}\right.\)

20: \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\2x+14y=18\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+14y-2x-y=18-5\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13y=13\\2x=5-y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=1\\2x=5-1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)

21: \(\left\{{}\begin{matrix}5x+3y=-7\\3x-y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+3y=-7\\9x-3y=-24\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5x+3y+9x-3y=-7-24\\3x-y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}14x=-31\\y=3x+8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{31}{14}\\y=3\cdot\dfrac{-31}{14}+8=-\dfrac{93}{14}+\dfrac{112}{14}=\dfrac{19}{14}\end{matrix}\right.\)

22: \(\left\{{}\begin{matrix}-2x+y=-3\\3x+4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-3+2x\\3x+4\left(2x-3\right)=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-3\\3x+8x-12=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=22\\y=2x-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=2\cdot2-3=4-3=1\end{matrix}\right.\)

23: \(\left\{{}\begin{matrix}x+y=2\\x+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3y-x-y=6-2\\x+y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2y=4\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=2-y=2-2=0\end{matrix}\right.\)

24: \(\left\{{}\begin{matrix}x-2y=-5\\3x+4y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=-10\\3x+4y=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-4y+3x+4y=-10-5\\x-2y=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5x=-15\\2y=x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\2y=-3+5=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

25: \(\left\{{}\begin{matrix}3x-2y=12\\4x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2y=12\\8x+2y=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x-2y+8x+2y=12+10\\4x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=22\\y=5-4x\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=5-4\cdot2=5-8=-3\end{matrix}\right.\)

26: \(\left\{{}\begin{matrix}2x-y=10\\5x+2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-2y=20\\5x+2y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x-2y+5x+2y=20+6\\2x-y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=26\\y=2x-10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{26}{9}\\y=2x-10=2\cdot\dfrac{26}{9}-10=\dfrac{52}{9}-10=-\dfrac{38}{9}\end{matrix}\right.\)

27: \(\left\{{}\begin{matrix}5x-2y=10\\5x-2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-2y-5x+2y=10-6\\5x-2y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}0x=4\\2y=5x-6\end{matrix}\right.\Leftrightarrow\left(x;y\right)\in\varnothing\)

28: \(\left\{{}\begin{matrix}3x+2y=8\\4x-3y=-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x+8y=32\\12x-9y=-36\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}12x+8y-12x+9y=32+36\\3x+2y=8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}17y=68\\3x=8-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\3x=8-2\cdot4=8-8=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\y=4\end{matrix}\right.\)

37: \(\left\{{}\begin{matrix}2x+y=4\\2x+0y-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=6\\y=4-2x=4-6=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)

38: \(\left\{{}\begin{matrix}x-2y=2\\2x-4y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=4\\2x-4y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-4y-2x+4y=4-1\\x-2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0y=3\\x-2y=2\end{matrix}\right.\)

=>\(\left(x;y\right)\in\varnothing\)

39: \(\left\{{}\begin{matrix}3x+2y-2=0\\9x+6y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=2\\9x+6y=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}9x+6y=6\\9x+6y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0y=2\\3x+2y=2\end{matrix}\right.\Leftrightarrow\left(x;y\right)\in\varnothing\)

40: \(\left\{{}\begin{matrix}2x-y=2\\4x-2y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=2\\4x-2y=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-y=2\\2x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0x=0\\y=2x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in R\\y=2x-2\end{matrix}\right.\)

41: \(\left\{{}\begin{matrix}x+2y=4\\2x+9y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=8\\2x+9y=18\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+9y-2x-4y=18-8\\x+2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=10\\x=4-2y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2\\x=4-2\cdot2=4-4=0\end{matrix}\right.\)

42: \(\left\{{}\begin{matrix}-2x+y=-3\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x+y-x-y=-3-3\\x+y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-3x=-6\\y=3-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3-2=1\end{matrix}\right.\)

43: \(\left\{{}\begin{matrix}x-y=0\\2x+y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y+2x+y=0-5\\x=y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=-5\\y=x\end{matrix}\right.\Leftrightarrow y=x=-\dfrac{5}{3}\)

44: \(\left\{{}\begin{matrix}2x+y=0\\x-4y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2x\\x-4\cdot\left(-2x\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}9x=0\\y=-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-2\cdot0=0\end{matrix}\right.\)

45: \(\left\{{}\begin{matrix}-x+y=3\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x+y+x+2y=3+3\\x+2y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3y=6\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=3-2\cdot2=3-4=-1\end{matrix}\right.\)

46: \(\left\{{}\begin{matrix}x-y=2\\3x-2y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-3y=6\\3x-2y=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x-3y-2x+2y=6-9\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y=-3\\x=y+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=3\\x=3+2=5\end{matrix}\right.\)