K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

Ta có: x^2+(x+1)^2=y^4+(y+1)^4 

<=> x^2 + x = y(y+1){y(y+1+2} = {y(y+1)}^2 + 2y(y+1) 

<=> x^2 +x + 1 = {y(y+1) +1}^2 

Do VP là SCP, ta có: 

* Nếu x >=0 
=> x^2 < x^2 +x + 1 <= (x+1)^2 
=> Để VT là SCP => x^2 +x + 1 = (x+1)^2 
=> x =0 => y=0 hay y=-1 

* Nếu x <0 hay x <= -1 (do x nguyên) 
=> (x+2)^2 <= x^2 + x +1 < (x+1)^2 
=> Để VT là SCP 
=> (x+2)^2 = x^2 + x +1 
=> x=-1 => y=0 hay y=-1

31 tháng 3 2018

Ta có: x^2+(x+1)^2=y^4+(y+1)^4 

<=> x^2 + x = y(y+1){y(y+1+2} = {y(y+1)}^2 + 2y(y+1) 

<=> x^2 +x + 1 = {y(y+1) +1}^2 

Do VP là SCP, ta có: 

* Nếu x >=0 
=> x^2 < x^2 +x + 1 <= (x+1)^2 
=> Để VT là SCP => x^2 +x + 1 = (x+1)^2 
=> x =0 => y=0 hay y=-1 

* Nếu x <0 hay x <= -1 (do x nguyên) 
=> (x+2)^2 <= x^2 + x +1 < (x+1)^2 
=> Để VT là SCP 
=> (x+2)^2 = x^2 + x +1 
=> x=-1 => y=0 hay y=-1

@_@

30 tháng 3 2018

đặt \(x-\frac{1}{x}=a\)=>\(a^2=\left(x-\frac{1}{x}\right)^2=x^2+\frac{1}{x^2}-2\)=> \(x^2+\frac{1}{x^2}=a^2-2\)thay vào pt đc

2a+a^2-2=1

<=>a^2+2a-3=0

từ đó tìm đc a rồi tìm đc x 

31 tháng 3 2018

\(13\sqrt{x}-7\sqrt{y}=20\sqrt{5}=>\)VN

31 tháng 3 2018

Thay \(x^2=10-y^2\)vào Pt (1) :

\(\left(y-1\right)\left(2x-4y-14\right)=0\)...