từ điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB,AC, OA cắt BC tại H.Kẽ cát tuyến AMN, gọi K là trung điểm MN, OK cắt BC tại P chứng minh PM là tiếp tuyến
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x^2+(x+1)^2=y^4+(y+1)^4
<=> x^2 + x = y(y+1){y(y+1+2} = {y(y+1)}^2 + 2y(y+1)
<=> x^2 +x + 1 = {y(y+1) +1}^2
Do VP là SCP, ta có:
* Nếu x >=0
=> x^2 < x^2 +x + 1 <= (x+1)^2
=> Để VT là SCP => x^2 +x + 1 = (x+1)^2
=> x =0 => y=0 hay y=-1
* Nếu x <0 hay x <= -1 (do x nguyên)
=> (x+2)^2 <= x^2 + x +1 < (x+1)^2
=> Để VT là SCP
=> (x+2)^2 = x^2 + x +1
=> x=-1 => y=0 hay y=-1
Ta có: x^2+(x+1)^2=y^4+(y+1)^4
<=> x^2 + x = y(y+1){y(y+1+2} = {y(y+1)}^2 + 2y(y+1)
<=> x^2 +x + 1 = {y(y+1) +1}^2
Do VP là SCP, ta có:
* Nếu x >=0
=> x^2 < x^2 +x + 1 <= (x+1)^2
=> Để VT là SCP => x^2 +x + 1 = (x+1)^2
=> x =0 => y=0 hay y=-1
* Nếu x <0 hay x <= -1 (do x nguyên)
=> (x+2)^2 <= x^2 + x +1 < (x+1)^2
=> Để VT là SCP
=> (x+2)^2 = x^2 + x +1
=> x=-1 => y=0 hay y=-1
@_@
đặt \(x-\frac{1}{x}=a\)=>\(a^2=\left(x-\frac{1}{x}\right)^2=x^2+\frac{1}{x^2}-2\)=> \(x^2+\frac{1}{x^2}=a^2-2\)thay vào pt đc
2a+a^2-2=1
<=>a^2+2a-3=0
từ đó tìm đc a rồi tìm đc x
Thay \(x^2=10-y^2\)vào Pt (1) :
\(\left(y-1\right)\left(2x-4y-14\right)=0\)...