Cho tam giác ABC, lấy M thuộc BC sao cho MC/MB=1/2; lấy N thuộc AC sao cho NC/NA=1/2. Chứng minh:
a) MN song song AB, AB = 3MN
b) AM giao BN tại G. Chứng minh : AG/GM=BG/GN=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là ab
Ta có : a + b = 8 (1)
Và ab - 36 = ba (2)
Từ (2) ta có : ab - ba = 36
<=> 10a + b - 10b - a = 36
<=> 9a - 9b = 36
<=> 9( a - b ) = 36
<=> a - b = 4 (3)
Kết hợp (1) và (3) ta trở về bài toán tổng - hiệu
Số a là : ( 8 + 4 ) : 2 = 6
Số b là : 8 - 6 = 2
Vậy số bạn đầu là 62
Tam giác AEF và tam giác ABF có chung đường cao hạ từ F
\(\Rightarrow\frac{S_{AEF}}{S_{ABF}}=\frac{AE}{AB}\left(1\right)\)
Tam giác ABF và tam giác ABC có chung đường cao hạ từ B
\(\Rightarrow\frac{S_{ABF}}{S_{ABC}}=\frac{AF}{AC}\left(2\right)\)
Từ (1) và (2), ta được: \(\frac{S_{AEF}}{S_{ABC}}=\frac{AE}{AB}.\frac{AF}{AC}\)
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
Xét x= 1 => , từ đó có y=2∨y=3
Xét y=1 => , từ đó có x=2∨x=3
Xét x≥2 hoặc y≥2 . Ta có : (x,xy−1)=1. Do đó :
xy−1|x3+x⇒xy−1|x2+1⇒xy−1|x+y
=> x+y≥xy−1⇒(x−1)(y−1)≤2. Từ đó có
=> x = y = 2 ( loại ) hoặc x = 2 ; y = 3 hoặc x = 3 ; y= 2
Vậy các cặp số ( x;y ) thỏa mãn là (1;2),(2;1),(1;3),(3;1),(2;3),(3;2)