K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2019

Mấy dạng bài như thế này bạn nên học Phương Pháp Liên Hợp nhé
Dễ thấy x=1 là nghiệm của phương trình
Thêm bớt 1 giá trị nào đó để sau khi liên hợp ta đc biểu thức có nghiệm bằng 1
\(\sqrt{2x^2+23}-5=4x-4+\sqrt{2x^2+7}-3\)
\(\Leftrightarrow\frac{2x^2+23-25 }{\sqrt{2x^2+23}+5}=4\left(x-1\right)+\frac{2x^2+7-9}{\sqrt{2x^2+7}+3}\)
\(\Leftrightarrow\frac{2\left(x-1\right)\left(x+1\right)}{\sqrt{2x^2+23}+5}=4\left(x-1\right)+\frac{2\left(x-1\right)\left(x+1\right)}{\sqrt{2x^2+7}+3}\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2\left(x+1\right)}{\sqrt{2x^2+23}+5}-4-\frac{2\left(x+1\right)}{\sqrt{2x^2+7}+3}\right)=0\)
Dễ chứng minh biểu thức dài kia vô nghiệm (luôn <0)
Vậy nghiệm là x=1

@Lia - Maths is fun !\(Let:a,b,c\ge0\text{ }such:a+b+c=3.Found\text{ }max\text{ }and\text{ }min\text{ }A=\sqrt{x+3}+\sqrt{y+3}+\sqrt{z+3}\)    My solution !*Found maxUsing Bunhiacopxki we have\(A^2\le\left(a+3+b+3+c+3\right)\left(1+1+1\right)=...=36\)\(\Rightarrow A\le6\left(Because\:\text{ }\text{ }A\ge0\text{ }so\text{ }A\text{ }can't\text{ }< 0\text{ }\right)\)\(A_{max}=6\text{ }\Leftrightarrow a=b=c=1\)*Found minWe have extra...
Đọc tiếp

@Lia - Maths is fun !

\(Let:a,b,c\ge0\text{ }such:a+b+c=3.Found\text{ }max\text{ }and\text{ }min\text{ }A=\sqrt{x+3}+\sqrt{y+3}+\sqrt{z+3}\)    

My solution !

*Found max

Using Bunhiacopxki we have

\(A^2\le\left(a+3+b+3+c+3\right)\left(1+1+1\right)=...=36\)

\(\Rightarrow A\le6\left(Because\:\text{ }\text{ }A\ge0\text{ }so\text{ }A\text{ }can't\text{ }< 0\text{ }\right)\)

\(A_{max}=6\text{ }\Leftrightarrow a=b=c=1\)

*Found min

We have extra inequality \(\sqrt{x+z}+\sqrt{y+z}\ge\sqrt{z}+\sqrt{x+y+z}\left(x;y;z\ge0\right)\)(1)

Prove : \(\left(1\right)\Leftrightarrow x+y+2z+2\sqrt{\left(x+z\right)\left(y+z\right)}\ge z+x+y+z+2\sqrt{z\left(x+y+z\right)}\)

                     \(\Leftrightarrow\sqrt{xy+xz+yz+z^2}\ge\sqrt{xz+yz+z^2}\)        

                    \(\Leftrightarrow xy+xz+yz+z^2\ge xz+yz+z^2\)

                    \(\Leftrightarrow xy\ge0\left(True!\right)\)

Using (1) we have

\(A=\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\ge\sqrt{3}+\sqrt{a+b+3}+\sqrt{c+3}\)

                                                                                 \(=\sqrt{3}+\sqrt{3}+\sqrt{a+b+c}\)

                                                                                  \(=3\sqrt{3}\)

\(A_{min}=3\sqrt{3}\text{ }when\text{ }\hept{\begin{cases}a=b=\frac{3}{2}\\c=0\end{cases}}\)

       (In here I using when because there are many other a,b,c such a = 0 ; b = c = 3/2)

The problem is done !

6
22 tháng 2 2019

\(A=\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\)

CTV Should comply with the rules of olm.

26 tháng 2 2019

a/ ĐKXĐ \(x\ge-\frac{3}{2}\)

Ta thấy cả 2 vế đều là số không âm nên ta bình phương 2 vế được

\(3x+5+2\sqrt{\left(2x+3\right)\left(x+2\right)}\le1\)

\(\Leftrightarrow2\sqrt{\left(2x+3\right)\left(x+2\right)}\le-3x-4\)( Điều kiện \(x\le-\frac{4}{3}\))

Tiếp tục bình phương rồi rút gọn ta được

\(x^2-4x-8\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x\le2-2\sqrt{3}\\x\ge2+2\sqrt{3}\end{cases}}\)

Kết hợp tất cả ta được

\(-\frac{3}{2}\le x\le2-2\sqrt{3}\)

26 tháng 2 2019

Câu b với d cũng chỉ cần bình phương là ra

c/ Điều kiện: \(3\le x\le8\)

Đặt \(\sqrt{\left(x-3\right)\left(8-x\right)}=a\ge0\)

Thì bài toán thành

\(a-a^2+2>0\)

\(\Leftrightarrow-1\le a\le2\)

Tới đây thì đơn giản rồi