Em mong Thầy Cô, các anh chị, các bạn giúp em có đường lối làm câu c ạ. Em cảm ơn thầy cô và mọi người rất rất nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2018\sqrt{2x^2+1}=x+1+2018\sqrt{x^2+x+2}\)(ĐK: \(x\inℝ\))
\(\Leftrightarrow x^2-x-1+2018\left(\sqrt{2x^2+1}-\sqrt{x^2+x+2}\right)=0\)
\(\Leftrightarrow x^2-x-1+2018.\frac{2x^2+1-\left(x^2+x+2\right)}{\sqrt{2x^2+1}+\sqrt{x^2+x+2}}=0\)
\(\Leftrightarrow\left(x^2-x-1\right)\left(1+\frac{2018}{\sqrt{2x^2+1}+\sqrt{x^2+x+2}}\right)=0\)
\(\Leftrightarrow x^2-x-1=0\)
\(\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)
Giúppppppppp mình đang cần gấppppppppppppppp
Tìm x thuộc Z để A= 2 căn x-1/ căn x-2 có giá trị nguyên
\(A=\frac{2\sqrt{x}-1}{\sqrt{x}-2}=\frac{2\sqrt{x}-4+3}{\sqrt{x}-2}=2+\frac{3}{\sqrt{x}-2}\inℤ\Leftrightarrow\frac{3}{\sqrt{x}-2}\inℤ\)
mà \(x\inℤ\)suy ra \(\sqrt{x}-2\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)
\(\Leftrightarrow x\in\left\{1,9,25\right\}\).
Nhìn trên hình bạn có thể thấy rõ các điểm đó là điểm (-1;1) và (2;4)
Nhưng trong trường hợp đề không cho hình thì ta làm như sau:
Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=x+2\)\(\Leftrightarrow x^2-x-2=0\)(*)
Xét pt (*) có \(\Delta=\left(-1\right)^2-4.1.\left(-2\right)=9>0\)
Vậy pt (*) có 2 nghiệm phân biệt \(\orbr{\begin{cases}x_1=\frac{-\left(-1\right)+\sqrt{9}}{2.1}=2\\x_2=\frac{-\left(-1\right)-\sqrt{9}}{2.1}=-1\end{cases}}\)
Khi \(x=2\Rightarrow y=x+2=2+2=4\)
Khi \(x=-1\Rightarrow y=x+2=-1+2=1\)
Vậy ta tìm được đúng các điểm (-1;1) và (2;4)
H h g g g g g yvyvybgbbb y y. Y y y y y y y y y. Y y y. Y y y y. Y y y. Y y y y. Y u. U u u ưu u u u. Ưu. Ưu. U ưu u u. Ưu u. U. Y ưu u
Đặt \(5^x+12^x=y^2\)
Ta có: \(y^2\equiv5^x+12^x\left(mod3\right)\equiv5^x\left(mod3\right)\equiv\left(-1\right)^x\left(mod3\right)\)
mà ta có số chính phương khi chia cho \(3\)chỉ dư \(0\)hoặc \(1\).
Suy ra \(x\)là số chẵn.
Đặt \(x=2k,k\inℕ\).
Ta có: \(5^{2k}+12^{2k}=y^2\)
\(\Leftrightarrow y^2-12^{2k}=5^{2k}\)
\(\Leftrightarrow\left(y-12^k\right)\left(y+12^k\right)=5^{2k}\)
Suy ra \(\hept{\begin{cases}y-12^k=5^m\\y+12^k=5^n\end{cases}}\)với \(m+n=2k,m< n\).
suy ra \(2.12^k=5^n-5^m=5^m\left(5^{n-m}-1\right)\)
Ta có: \(2.12^k⋮̸5\Rightarrow5^m\left(5^{n-m}-1\right)⋮̸5\Rightarrow m=0\)
\(2.12^k=5^n-1=5^{2k}-1=25^k-1\)
Với \(k=0\): \(2.12^k=2,25^k-1=-1\)không thỏa mãn.
Với \(k=1\): \(2.12^k=2.12=24,25^k-1=25-1=24\)thỏa mãn.
suy ra \(x=2\).
Với \(k\ge2\): \(25^k-1>24^k-1>24^k=\left(2.12\right)^k>2.12^k\)
Vậy \(2\)là giá trị duy nhất của \(x\)thỏa mãn ycbt.
A B C O D E K Q N I F x y
a) Do \(\widehat{EKA}=\widehat{EQA}=90^0\) nên \(AQKE\) nội tiếp. Suy ra \(\widehat{KQE}=\widehat{KAE}=\widehat{BCE}.\)
b) Tứ giác \(EDBK\) nội tiếp vì \(\widehat{EDB}=\widehat{EKB}=90^0\). Suy ra:
\(\widehat{EDK}=\widehat{EBK}=\widehat{ECA}\). Vậy thì \(DECN\) nội tiếp
Từ đó \(\widehat{END}=\widehat{ECB}=\widehat{EQK}\) và \(\widehat{DEN}=\widehat{ACB}=\widehat{QAK}=\widehat{KEQ}\)
Suy ra \(\Delta EDN~\Delta EKQ\). Vậy \(\frac{EN}{EQ}=\frac{ND}{QK}\Leftrightarrow EN.QK=ND.EQ\)
c) Ta có \(EF||AO\) vì cùng vuông góc với \(xy\). Do đó:
\(\widehat{EFB}=\widehat{BAO}=\widehat{EAC}=\widehat{EBI}\). Suy ra \(\Delta EIB~\Delta EBF\)
Suy ra \(\frac{EI}{EB}=\frac{EB}{EF}\Leftrightarrow\frac{EI}{EF}=\frac{EB^2}{EF^2}=\frac{BI^2}{FB^2}\) (1)
Ta lại có \(\widehat{FBI}=\widehat{KED},\widehat{BFI}=\widehat{EBI}=\widehat{EKD}\), cho nên \(\Delta FBI~\Delta KED\)
Suy ra \(\frac{BI^2}{FB^2}=\frac{ED^2}{EK^2}=\frac{S_{END}}{S_{EQK}}\) (2) do \(\Delta EDN~\Delta EKQ\)
Từ (1) và (2) ta suy ra \(\frac{S_{END}}{S_{EQK}}=\frac{EI}{EF}.\)