K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

Để 2016+ 200x  chia hết cho 9[ dùng kí hiệu chia hết] mà 2016 chia hết cho 9 suy ra 200x chia hết cho 9

để 200x chia hết cho 9 suy ra 2+0+0+x chia hết cho 9

                                     suy ra  2+x chia hết cho 9

                     suy ra x =7    

13 tháng 12 2019

      \(125:5^{2x}=5\)                                                 \(2x+5=15\)

\(\Rightarrow\)      \(5^{2x}=125:5\)                             \(\Rightarrow\)\(2x\)     \(=15-5\)

\(\Rightarrow\)      \(5^{2x}=25\)                                    \(\Rightarrow\)\(2x\)\(=10\)

\(\Rightarrow\)      \(5^{2x}=\hept{\begin{cases}5^2\\\left(-5\right)^2\end{cases}}\)                    \(\Rightarrow\)  \(x\) \(=10:2\)

\(\Rightarrow\)        \(2x=2\)                                      \(\Rightarrow\)  \(x\) \(=5\)

\(\Rightarrow\)           \(x=2:2\)                       NẾU THẤY ĐÚNG HÃY NHỚ K CHO MÌNH VỚI NHÉ !!!    :33

\(\Rightarrow\)           \(x=1\)                                         

13 tháng 12 2019

    Khi sao chép 1 ô có nội dung là công thức chứa địa chỉ thì các địa chỉ được điều chỉnh để giữ nguyên vị trí tương đối giữa ô chứa công thức và ô có địa chỉ trong công thức.

  Học tốt~

#Dũng

13 tháng 12 2019

Yêu cầu đề bài là gì?

13 tháng 12 2019

Thử vẽ Sketchpad cũng đẹp ấy chứ:))

Gọi I là giao điểm của KB và HD;J là giao điểm của CK và HD;O là giao điểm của CM và KH.

Hình vuông ABCD có \(BD\) là đường chéo nên \(\widehat{KDM}=45^0\)

Xét tam giác KDM có \(\widehat{DKM}=90^0;\widehat{KDM}=45^0\Rightarrow\Delta KDM\) vuông cân tại K.Suy ra KD=KM ( 1 )

Tứ giác AHMK có \(\widehat{KAH}=\widehat{AHM}=\widehat{MKA}=90^0\) nên tứ giác AHMK là hình chữ nhật => AH=MK ( 2 )

Từ ( 1 );( 2 ) suy ra AH=DK.

Xét \(\Delta ADH\) và \(\Delta KDC\) có:KD=AH;DC=AD;\(\widehat{DAH}=\widehat{KDC}=90^0\)

\(\Rightarrow\Delta AHD=\Delta DCK\left(2cgv\right)\Rightarrow\widehat{ADH}=\widehat{DCJ}\)

Ta có:\(\widehat{ADJ}+\widehat{JDC}=90^0\Rightarrow\widehat{JDC}+\widehat{DCJ}=90^0\Rightarrow\widehat{DJC}=90^0\left(3\right)\)

Lại có:\(AD=AB\Rightarrow AK+KD=AH+HB\Rightarrow AK=HB\left(AH=KD\right)\)

Xét \(\Delta ABK\) và \(\Delta BCH\) có:\(AB=BC;HB=AK;\widehat{KAB}=\widehat{HBC}=90^0\Rightarrow\Delta ABK=\Delta BCH\left(2cgv\right)\)

\(\Rightarrow\widehat{ABK}=\widehat{HCB}\)

Mà \(\widehat{ABK}+\widehat{KBC}=90^0\Rightarrow\widehat{KBC}+\widehat{HCB}=90^0\Rightarrow CH\perp BK\left(4\right)\)

Từ ( 3 );( 4 ) suy ra I là trực tâm tam giác HKC.

Ta sẽ chứng minh CM đi qua I.Thật vậy !

Xét \(\Delta AHK\) và \(\Delta CMQ\) có:\(AK=MQ;AH=CQ\left(=DK\right);\widehat{KAH}=\widehat{MQC}=90^0\)

\(\Rightarrow\Delta AHK=\Delta QCM\left(2cgv\right)\Rightarrow\widehat{AHK}=\widehat{QCM}\) mà \(AH\perp QC\Rightarrow KH\perp CM\)( ai đó cm cái này với !! )

=> CM đi qua I hay \(CM\perp HK\)

13 tháng 12 2019

\(Ta có : 1 + 2 + 3 + ... + 100+ 50 + 53\)\( + ... + 197\)

\(= ( 1 + 2 + 3 + ... + 100 ) + ( 50 + 53 + ...\)\(+ 197)\)

\(=[(100+1)÷1+1].[(100+1)÷2]+ \)\([ ( 197 - 50) ÷3+ 1 ] . [ ( 197+ 1)÷2]\)

\(=5050 + 6175\)

\(= 11225\)

13 tháng 12 2019

Cs bn lm đúng òi đs 

13 tháng 12 2019

a) ĐKXĐ: \(\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\\2-x\ne0\end{cases}}\) => \(\hept{\begin{cases}x\ne-2\\x\ne\pm2\\x\ne2\end{cases}}\) => \(x\ne\pm2\)

Ta có:Q = \(\frac{x-1}{x+2}+\frac{4x+4}{x^2-4}+\frac{3}{2-x}\)

Q = \(\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4x+4}{\left(x-2\right)\left(x+2\right)}-\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

Q = \(\frac{x^2-2x-x+2+4x+4-3x-6}{\left(x+2\right)\left(x-2\right)}\)

Q = \(\frac{x^2-2x}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x}{x+2}\)

b) ĐKXĐ P: x - 3 \(\ne\)0 => x \(\ne\)3

Ta có: P = 3 => \(\frac{x+2}{x-3}=3\)

=> x + 2 = 3(x - 3)

=> x + 2 = 3x - 9

=> x - 3x = -9 - 2

=> -2x = -11

=> x = 11/2 (tm)

Với x = 11/2 thay vào Q => Q = \(\frac{\frac{11}{2}}{\frac{11}{2}+2}=\frac{11}{15}\)

c) Với x \(\ne\)\(\pm\)2; x \(\ne\)3

Ta có: M = PQ = \(\frac{x+2}{x-3}\cdot\frac{x}{x+2}=\frac{x}{x-3}=\frac{x-3+3}{x-3}=1+\frac{3}{x-3}\)

Để M \(\in\)Z <=> 3 \(⋮\)x - 3

=> x - 3 \(\in\)Ư(3) = {1; -1; 3; -3}

Lập bảng:

x - 3 1 -1 3 -3
  x 4 2 (ktm) 6 0

Vậy ...