Tuyết viết số lớn nhất có tính chất gồm bốn chữ số đôi một khác nhau và là một bội của 9. Khi bỏ chữ số hàng nghìn và hàng trăm thì được số là bội của 3. Khi bỏ chữ số hàng nghìn và hàng trăm thì được số là bội của 2. Hương viết số nhỏ nhất có tính chất như trên. Tính tổng 2 số mà Tuyết và Hương viết.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4)
Gọi 2 số tự nhiên đó là a và b ( a > b )
Ta có :
ƯCLN ( a , b ) = 15
=> a = 15m và b = 15n ( m > n ; m và n là 2 số nguyên tố cùng nhau ) (1)
Do a - b = 15m - 15n = 15 . ( m - n ) = 90
=> m - n = 6 (2)
Do b < a < 200 nên n < m < 13 (3)
Từ (1) ; (2) ; (3)
=> ( m ; n ) \(\in\)( 7 ; 1 ) ; ( 11 ; 5 )
=> ( a ; b ) \(\in\)( 105 ; 15 ) ; ( 165 ; 75
Bài 1:
1) Gọi 2 số tự ngiên lẻ liên tiếp là : 2k+1 , 2k+3 (k thuộc N)
Gọi d là UCLN của 2k+1 , 2k+3
=> \(\hept{\begin{cases}2k+1⋮d\\2k+3⋮d\end{cases}}\)
=> \(\left(2k+3\right)-\left(2k+1\right) ⋮d\)
=> \(2⋮d\)
=> \(d\in\left\{1;2\right\}\) mà d là UCLN của 2 số lẻ nên d khác 2
=> d=1
=> đpcm
Câu b tương tự
Bé có một số hoa . Bé tặng bà 1/4 số hoa và thêm 1 bông . Bé tặng mẹ 5/11 số hoa còn lại và thêm 4 bông . Bé tặng Mai số hoa ít hơn 3/5 số hoa còn lại 1 bông . Cuối cùng bé còn lại 9 bông để cắm trong phòng của mình . Lúc đầu bé có bao nhiêu bông hoa ?
Ngày mai mình sẽ làm tiếp các câu còn lại.
Câu 1 ( hai số nguyên tố cùng nhau có ƯCLN là 1)
a) Gọi hai số lẻ liên tiếp là a và a + 2
Giả sử a + 2 và a cùng chia hết cho số nguyên tố p (p > 1)
Vì a + 2 chia hết cho p và a chia hết cho p
Suy ra a + 2 - a = 2 chia hết cho p
2 chia hết cho p thì p là ước của 2
Ư (2) = 2 (ở đây không có số 1 vì p > 1)
Mà a + 2 và a đều là số lẻ nên a và a + 2 không thể chia hết 2
Vì a và a + 2 không chia hết cho 2 Suy ra p = 1
Mà p = 1 thì giả sử sai
Giả sử sai
=> ĐPCM
1,
a , gọi hai số lẻ liên tiếp là 2k+1; 2k+3 với k thuộc tập hợp N
gọi ƯCLN (2k+1;2k+3)là d với d thuộc tập hợp N*
suy ra 2k+1 chia hết cho d
2k+3 chia hết cho d
suy ra :(2k+3)-(2k+1) chia hết cho d
(2k-2k) +(3-1) chia hết cho d
0+2 chia hết cho d
suy ra 2chia hết cho d
suy ra d thuộc tập hợp Ư (2)={1;2}
mà 2k+1 ko chia hết cho 2
2k+3 ko chia hết cho 2
suy ra d=1
vậy ƯCLN(2k+1;2k+3) =1 suy ra hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
b, gọi ƯCLN (2n+5;2n+7)là d với d thuộc tập hợp N*
suy ra 2n+5 chia hết cho d
2n+7 chia hết cho d
suy ra (2n+7)-(2n+5) chia hết cho d
(2n-2n)+(7-5)
0+2 chia hết cho d
suy ra 2 chia hết cho d
là như câu a
Cho x > 1. Tìm min P = 4x + 25/x - 1
Ta có:
P=4(x-1)+25/(x-1)+4
>=2 căn [4(x-1).25/(x-1)]+4=25
Dấu '=' khi 4(x-1)=25/(x-1)=>(x-1)^2=25/4=>x-1=5/2=>x=7/2
bạn sửa chữ "tổn" thành "tổng" nhé
nêu cánh làm nhé