K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tùy nha bạn

Lên lớp 10 cái đó được tính vào phần toán đại đấy

a: \(\left\{{}\begin{matrix}x+3y=11\\3x-y=9-2y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+3y=11\\3x+y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3y=11\\9x+3y=27\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}9x+3y-x-3y=27-11\\x+3y=11\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}8x=16\\3y=11-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{11-x}{3}=\dfrac{11-2}{3}=\dfrac{9}{3}=3\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}5\left(x+2y\right)=3x-1\\2x+4=3\left(x-5y\right)-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+10y-3x=-1\\2x+4-3x+15y=-12\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+10y=-1\\-x+15y=-16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-2x+30y=-32\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+10y-2x+30y=-1+\left(-32\right)\\x-15y=16\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}40y=-33\\x=15y+16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{33}{40}\\x=15\cdot\dfrac{-33}{40}+16=\dfrac{29}{8}\end{matrix}\right.\)

2 tháng 7 2024

a) 

\(\left\{{}\begin{matrix}x+3y=11\\3x-y=9-2y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+3y=11\\3x+y=9\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3x+9y=33\\3x+y=9\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}8y=24\\3x+y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\3x+3=9\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{6}{3}=2\end{matrix}\right.\)

b) 

\(\left\{{}\begin{matrix}5\left(x+2y\right)=3x-1\\2x+4=3\left(x-5y\right)-12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-15y-12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\x-15y=16\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\2x-30y=32\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}40y=-33\\x-15y=16\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{33}{40}\\x+\dfrac{99}{8}=16\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{33}{40}\\x=16-\dfrac{99}{8}=\dfrac{29}{8}\end{matrix}\right.\)

\(\dfrac{x+100}{4}+\dfrac{x+99}{5}=\dfrac{x+98}{6}+\dfrac{x+97}{7}\)

=>\(\left(\dfrac{x+100}{4}+1\right)+\left(\dfrac{x+99}{5}+1\right)=\left(\dfrac{x+98}{6}+1\right)+\left(\dfrac{x+97}{7}+1\right)\)

=>\(\dfrac{x+104}{4}+\dfrac{x+104}{5}=\dfrac{x+104}{6}+\dfrac{x+104}{7}\)

=>\(\left(x+104\right)\left(\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}-\dfrac{1}{7}\right)=0\)

=>x+104=0

=>x=-104

2 tháng 7 2024

\(\dfrac{x+100}{4}+\dfrac{x+99}{5}=\dfrac{x+98}{6}+\dfrac{x+97}{7}\\ \dfrac{x+100}{4}+\dfrac{x+99}{5}-\dfrac{x+98}{6}-\dfrac{x+97}{7}=0\\ \left(\dfrac{x+100}{4}+1\right)+\left(\dfrac{x+99}{5}+1\right)-\left(\dfrac{x+98}{6}+1\right)-\left(\dfrac{x+97}{7}+1\right)=0\\ \dfrac{x+104}{4}+\dfrac{x+104}{5}-\dfrac{x+104}{6}-\dfrac{x+104}{7}=0\\ \left(x+104\right)\cdot\left(\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}-\dfrac{1}{7}\right)=0\)

Vì \(\left(\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}-\dfrac{1}{7}\right)\ne0\) nên:

\(x+104=0\\ x=-104\)

Vậy \(x=-104\)

Thay x=-2 và y=3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}2a\cdot\left(-2\right)+3b\cdot3=5\\-3a\cdot\left(-2\right)+2b\cdot3=30\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-4a+9b=5\\6a+6b=30\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-12a+27b=15\\12a+12b=60\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-12a+27b+12a+12b=15+60\\a+b=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}39b=75\\a=5-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{75}{39}=\dfrac{25}{13}\\a=5-\dfrac{25}{13}=\dfrac{40}{13}\end{matrix}\right.\)

2 tháng 7 2024

\(\left\{{}\begin{matrix}x+2y=1+3\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=4\\7y=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2=4\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=4-2=2\\y=1\end{matrix}\right.\)

Vậy: ...

2 tháng 7 2024

\(\left\{{}\begin{matrix}x+2y=1+3\\2x-3y=1\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}2x+4y=8\\2x+4y-\left(2x-3y\right)=8-1\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}2x+4y=8\\2x+4y-2x+3y=7\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}2x+4y=8\\\left(2x-2x\right)+\left(4y+3y\right)=7\end{matrix}\right.\)

⇒  \(\left\{{}\begin{matrix}2x+4y=8\\0+7y=7\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}2x+4y=8\\y=1\end{matrix}\right.\)

Thay y = 1 vào biểu thức 2\(x\) + 4y = 8 ta có: 2\(x\) + 4.1 = 8 

⇒ 2\(x\) + 4 = 8 ⇒ 2\(x\) = 4 ⇒ \(x\) = 4: 2 ⇒ \(x\) = 2

Vậy \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

 

2 tháng 7 2024

a. \(2x\left(3x+1\right)-7\left(3x-1\right)=0\)

\(\Leftrightarrow6x^2+2x-21x+7=0\)

\(\Leftrightarrow6x^2-19x+7=0\)

\(\Delta=19^2-4.6.7=193>0\)

\(\Rightarrow\) Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{19+\sqrt{193}}{12}\\x_2=\dfrac{19-\sqrt{193}}{12}\end{matrix}\right.\)

b. \(4x^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left(2x\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left(2x-2x-1\right)\left(2x+2x+1\right)=0\)

\(\Leftrightarrow-\left(4x+1\right)=0\)

\(\Leftrightarrow4x=-1\)

\(\Leftrightarrow x=\dfrac{-1}{4}\)

c. \(4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\)

\(\Leftrightarrow2x-1=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\)

d. \(x\left(x+2\right)-7x-14=0\)

\(\Leftrightarrow x\left(x+2\right)-7\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\)

#$\mathtt{Toru}$

2 tháng 7 2024

Nửa chu vi của hình chữ nhật là: 60:2=30(m)

Chiều rộng của hình chữ nhật là: (30-6):2=12(m)

Chiều dài của hình chữ nhật là: 30 - 12 = 18(m)

Diện tích mảnh đất là: 18 x 12 = 216 (m2)

Đáp số: 216m2

2 tháng 7 2024

                      Giải:

Nửa chu vi của mảnh vườn hình chữ nhật là:

                  60 : 2 = 30 (m)

Gọi chiều rộng lúc đầu của mảnh vườn hình chữ nhật là \(x\) (m); 30 > \(x\) > 0

Chiều dài lúc đầu của mảnh vườn hình chữ nhật là: 30 - \(x\) (m)

Chiều dài của mảnh vườn hình chữ nhật lúc sau là:

  30 - \(x\) + 2 =  (30 + 2) - \(x\) = 32 - \(x\) (m)

Chiều rộng của hình chữ nhật lúc sau là: \(x\) + 6 (m)

Diện tích của hình chữ nhật lúc sau là:

                 (32 - \(x\))(\(x\) + 6)   (m2)  

Diện tích của mảnh  vườn hình chữ nhật lúc đầu là:  (30 - \(x\)) x \(x\) = 30\(x\) - \(x^2\) (m2)

Theo bài ra ta có phương trình: 

        (32 - \(x\))(\(x\) + 6) - (30\(x\) - \(x^2\)) = 96

          32\(x\) + 192 - \(x^2\) - 6\(x\) - 30\(x\) + \(x^2\) = 96

          (32\(x\) - 6\(x\) - 30\(x\)) + 192 - (\(x^2\) - \(x^2\)) = 96

            (26\(x\) - 30\(x\)) + 192 + 0 = 96

                    - 4\(x\) + 192 = 96

                                 4\(x\) = 192 - 96

                                 4\(x\) = 96

                                \(x\) = 96 : 4

                                \(x\) = 24

Chiều dài ban đầu của hình chữ nhật là: 30 - 24 = 6 (m)

     6 < 24

Chiều dài nhỏ hơn chiều rộng, không có hình chữ nhật nào có kích thước thoả mãn đề bài. 

 

 

  

2 tháng 7 2024

3)

a) Ta có:

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{ac}+\dfrac{2}{bc}\\ =\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2a+2b+2c}{abc}=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2\left(a+b+c\right)}{abc}\\ =\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)

\(=>\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}=\left|\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right|\) 

b) 

\(\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2024^2}+\dfrac{1}{2025^2}}\left(1\right)\\ =\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{\left(-3\right)^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{\left(-4\right)^2}}+...+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2024^2}+\dfrac{1}{\left(-2025\right)^2}}\)

Theo câu a \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left|\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right|\) khi \(a+b+c=0\)

Mà: \(\left\{{}\begin{matrix}1+2+\left(-3\right)=0\\1+3+\left(-4\right)=0\\....\\1+2024+\left(-2025\right)=0\end{matrix}\right.\)  

=> \(\left(1\right)=\left|1+\dfrac{1}{2}+\dfrac{1}{-3}\right|+\left|1+\dfrac{1}{3}+\dfrac{1}{-4}\right|+...+\left|1+\dfrac{1}{2024}+\dfrac{1}{-2025}\right|\)  

Mà: \(\left\{{}\begin{matrix}1+\dfrac{1}{2}\cdot\dfrac{1}{-3}>0\\1+\dfrac{1}{3}+\dfrac{1}{-4}>0\\...\\1+\dfrac{1}{2024}+\dfrac{1}{-2025}>0\end{matrix}\right.\) 

=> \(\left(1\right)=1+\dfrac{1}{2}+\dfrac{1}{-3}+1+\dfrac{1}{3}+\dfrac{1}{-4}+...+1+\dfrac{1}{2024}+\dfrac{1}{-2025}\\ =\left(1+1+...+1\right)+\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{2024}-\dfrac{1}{2024}\right)-\dfrac{1}{2025}\\ =2023+\dfrac{1}{2}-\dfrac{1}{2025}\)

2 tháng 7 2024

4)

\(\left(12-6\sqrt{3}\right)\sqrt{\dfrac{3}{14-8\sqrt{3}}}-3\sqrt{2\left(1-\sqrt{-2\sqrt{3}+4}\right)+2\sqrt{4+2\sqrt{3}}}\\ =\left(12-6\sqrt{3}\right)\sqrt{\dfrac{3}{\left(2\sqrt{2}\right)^2-2\cdot2\sqrt{2}\cdot\sqrt{6}+\left(\sqrt{6}\right)^2}}-3\sqrt{2\left(1-\sqrt{4-2\sqrt{3}}\right)+2\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}}\\ =\left(12-6\sqrt{3}\right)\sqrt{\dfrac{3}{\left(2\sqrt{2}-\sqrt{6}\right)^2}}-3\sqrt{2\left(1-\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}\right)+2\sqrt{\left(\sqrt{3}+1\right)^2}}\\ =\left(12-6\sqrt{3}\right)\dfrac{\sqrt{3}}{2\sqrt{2}-\sqrt{6}}-3\sqrt{2\left(1-\sqrt{\left(\sqrt{3}-1\right)^2}\right)+2\left(\sqrt{3}+1\right)}\\ =\left(12-6\sqrt{3}\right)\dfrac{\sqrt{3}}{2\sqrt{2}-\sqrt{6}}-3\sqrt{2\left(1-\sqrt{3}+1\right)+2\sqrt{3}+2}\\ =\left(12-6\sqrt{3}\right)\dfrac{\sqrt{3}}{2\sqrt{2}-\sqrt{6}}-3\sqrt{2-2\sqrt{3}+2+2\sqrt{3}+2}\\ =3\sqrt{2}\cdot\left(2\sqrt{2}-\sqrt{6}\right)\cdot\dfrac{\sqrt{3}}{2\sqrt{2}-\sqrt{6}}-3\sqrt{6}\\ =3\sqrt{2}\cdot\sqrt{3}-3\sqrt{6}\\ =3\sqrt{6}-3\sqrt{6}\\ =0\)

 

a: Xét ΔABC có AD là phân giác

nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)

=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{120}{2}\right)=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60\)

=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot\dfrac{1}{2}=\dfrac{AB\cdot AC}{AB+AC}\)

=>\(\dfrac{1}{AD}=\dfrac{AB+AC}{AB\cdot AC}=\dfrac{1}{AB}+\dfrac{1}{AC}\)

b:  \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)

=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos45=\dfrac{2\cdot AB\cdot AC\sqrt{2}}{2\left(AB+AC\right)}=\dfrac{AB\cdot AC\cdot\sqrt{2}}{AB+AC}\)

=>\(\dfrac{1}{AD}=\dfrac{AB+AC}{AB\cdot AC}\cdot\dfrac{1}{\sqrt{2}}\)

=>\(\dfrac{\sqrt{2}}{AD}=\dfrac{AB+AC}{AB\cdot AC}=\dfrac{1}{AB}+\dfrac{1}{AC}\)

c: \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)

=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{60}{2}\right)\)

=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos30=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot\dfrac{\sqrt{3}}{2}\)

=>\(\dfrac{AD}{\sqrt{3}}=\dfrac{AB\cdot AC}{AB+AC}\)

=>\(\dfrac{\sqrt{3}}{AD}=\dfrac{AB+AC}{AB\cdot AC}=\dfrac{1}{AB}+\dfrac{1}{AC}\)