Hai đội công nhân cùng làm 1 việc thì làm xong trong 4 ngày.nếu đội 1 làm một mình trong 3 ngày rồi nghỉ thì đội 2 làm trong 6 ngày mới xong công việc . Hỏi mỗi đội làm trong bao lâu mới xong công việc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (x + 1)2 - (2 - x)2 = 4
<=> x2 + 2x + 1 - x2 + 4x - 4 = 4
<=> (x2 - x2) + (2x + 4x) + (1 - 4) = 4
<=> 6x - 3 = 4
<=> 6x = 4 + 3
<=> 6x = 7
<=> x = 7 : 6 = 7/6
=> x = 7/6
2) (x + 2)2 + x(3 - x) = 3
<=> x2 + 4x + 4 + 3x - x2 = 3
<=> (x2 - x2) + (4x + 3x) + 4 = 3
<=> 7x + 4 = 3
<=> 7x = 3 - 4
<=> 7x = -1
<=> x = -1 : 7 = -1/7
=> x = -1/7
a) (2a - b)(b + 4a) + 2a(b - 3a)
= 2a(b + 4a) - b(b + 4a) + 2ab - 6a^2
= 2ab + 8a^2 - b^2 - 4ab + 2ab - 6a^2
= (8a^2 - 6a^2) + (2ab + 2ab - 4ab) - b^2
= 2a^2 - b^2
b) .(3a - 2b)(2a - 3b) - 6a(a - b)
= 3a(2a - 3b) - 2b(2a - 3b) - (6a^2 - 6ab)
= 6a^2 - 9ab - (4ab - 6b^2) - (6a^2 - 6ab)
= 6a^2 - 9ab - 4ab + 6b^2 - 6a^2 + 6ab
= 6b^2 + (6a^2 - 6a^2) + (6ab - 4ab - 9ab)
= 6b^2 - 7ab
c. 5b(2x - b) - (8b - x)(2x - b)
= 10bx - 5b^2 - 8b(2x - b) + x(2x - b)
= 10bx - 5b^2 - 16bx + 8b^2 + 2x^2 - bx
= (10bx - 16bx - bx) + 2x^2 + (8b^2 - 5b^2)
= -7bx + 2x^2 + 3b^2
d. 2x(a + 15x) + (x - 6a)(5a + 2x)
= 2ax + 30x^2 + x(5a + 2x) - 6a(5a + 2x)
= 2ax + 30x^2 + 5ax + 2x^2 - 30a^2 - 12ax
= (30x^2 + 2x^2) + (2ax + 5ax - 12ax) - 30a^2
= 32x^2 - 5ax - 30a^2
Chúc bạn hok tốt !!!
Giải :
\(\text{Đ/k : }x^2-4x-6\ge0\)
Bình phương 2 vế phương trình, ta được :
\(x^2-4x-6=15\)
\(\Leftrightarrow x^2-4x-21=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}}\)
Thế x tìm được vào Đ/k ta thấy cả \(x=7\) và \(x=-3\) đều thỏa mãn.
Vậy \(S=\left\{7;-3\right\}\).
\(a,mx+1\ge m^2+x\)
\(\Rightarrow mx+1-m^2-x\ge0\)
\(\Rightarrow m\left(x-1\right)-\left(x-1\right)\ge0\)
\(\Rightarrow\left(x-1\right)\left(m-1\right)\ge0\)
Nếu \(m\ge1\Rightarrow m-1\ge0\Rightarrow x-1\ge0\Rightarrow x\ge1\)
Nếu \(m< 1\Rightarrow m-1< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)
KL....
2A = 2x^2 - 2xy + 2y^2 - 4x - 4y
2A = ( x^2 - 2xy + y^2 ) + ( x^2 - 4x + 2^2 ) + ( y^2 - 4y + 2^2 ) - 8
2A = ( x - y )^2 + ( x - 2 )^2 + ( y - 2 )^2 - 8
Ta có : ( x - y )^2 >= 0 ; ( x - 2 )^2 >= 0 ; ( y - 2 )^2 >= 0 với mọi x , y
=> Min 2A = 0 + 0 + 0 - 8 = -8
=> Min A = -8 : 2 = -4
A B C M N P I
Trên nửa mặt phẳng bờ AM không chứa điểm B, dựng \(\Delta\)AMP sao cho \(\Delta\)AMP ~ \(\Delta\)ABC
Định nghĩa tương tự với điểm N. Gọi phân giác của ^ABM cắt AM tại I.
Từ \(\Delta\)AMP ~ \(\Delta\)ABC ta có tỉ số \(\frac{AM}{AB}=\frac{AP}{AC}\)hay \(\frac{AP}{AM}=\frac{AC}{AB}\)
Đồng thời ^MAP = ^BAC => ^PAC = ^MAB. Từ đó \(\Delta\)APC ~ \(\Delta\)AMB (c.g.c)
Suy ra ^APC = ^AMB => ^APM + ^MPC = ^AMB => ^MPC = ^AMB - ^APM = ^AMB - ^ACB (1)
Lập luận tương tự ta có ^MNB = ^AMC - ^ANM = ^AMC - ^ABC (2)
Từ (1) và (2), kết hợp với giả thiết ^AMB - ^C = ^AMC - ^B suy ra ^MPC = ^MNB
Ta lại có ^PMC = ^AMC - ^AMP = ^AMC - ^ABC = ^AMB - ^ACB = ^AMB - ^AMN = ^NMB
Do vậy \(\Delta\)BNM ~ \(\Delta\)CPM (g.g) => \(\frac{BM}{CM}=\frac{MN}{MP}\)
Mặt khác \(\Delta\)ANM ~ \(\Delta\)AMP (~\(\Delta\)ABC) => \(\frac{MN}{PM}=\frac{AN}{AM}=\frac{AB}{AC}\)
Từ đây \(\frac{BM}{CM}=\frac{AB}{AC}\) hay \(\frac{BA}{BM}=\frac{CA}{CM}\). Theo ĐL đường phân giác trong tam giác có:
\(\frac{BA}{BM}=\frac{IA}{IM}\). Do đó \(\frac{CA}{CM}=\frac{IA}{IM}\)=> CI là phân giác của ^ACM
Điều này tức là phân giác của ^ABM và ^ACM cắt nhau tại điểm I nằm trên AM => ĐPCM.
Gọi thời gian đội I, đội II làm một mình xong công việc lần lượt là x, y (đơn vị ngày, đk :x, y > 4)
+ Thì mỗi ngày đội I làm được 1/x (công việc), đội II được 1/y (công việc)
Vì hai đội cùng làm thì 4 ngày xong nên mỗi ngày hai đội làm được 1/4 (công việc), nên ta có phương trình 1/x + 1/y =1/4.
+ Phần công việc đội I làm trong 3 ngày là 3/x (công việc), phần công việc đội II làm trong 6 ngày là 6/y. Vì khi đội I làm 3 ngày, đội II làm 6 ngày thì xong công việc nên ta có pt : 3/x + 6/y = 1
ta có hpt :1/x + 1/y =1/4 và 3/x + 6/y = 1
=> x=6 , y=12
Gọi thời gian đội I, đội II làm một mình xong công việc lần lượt là x, y (đơn vị ngày, đk :x, y > 4)
+ Thì mỗi ngày đội I làm được 1/x (công việc), đội II được 1/y (công việc)
Vì hai đội cùng làm thì 4 ngày xong nên mỗi ngày hai đội làm được 1/4 (công việc), nên ta có phương trình 1/x + 1/y =1/4.
+ Phần công việc đội I làm trong 3 ngày là 3/x (công việc), phần công việc đội II làm trong 6 ngày là 6/y. Vì khi đội I làm 3 ngày, đội II làm 6 ngày thì xong công việc nên ta có pt : 3/x + 6/y = 1
ta có hpt :1/x + 1/y =1/4 và 3/x + 6/y = 1
=> x=6 , y=12
học tốt