cạnh góc vuông kề với góc 60 độ của 1 tam giác vuông=25cm. tính các cạnh còn lại của tam giác vuuoong đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(\sqrt{4\left(a-3\right)^2}=\sqrt{2^2\left(a-3\right)^2}=2\sqrt{\left(a-3\right)^2}=2.\left|a-3\right|=2\left(a-3\right)=2a-6\) (Vì \(a\ge3\) )
b) \(\sqrt{9\left(b-2\right)^2}=\sqrt{3^2\left(b-2\right)^2}=3\sqrt{\left(b-2\right)^2}=3\left|b-2\right|=3\left(2-b\right)\)
\(=6-3b\) (vì b < 2 )
b) \(\sqrt{27.48\left(1-a\right)^2}=\sqrt{27.3.16.\left(1-a\right)^2}=\sqrt{81.16.\left(1-a\right)^2}\)
\(=\sqrt{9^2.4^2.\left(1-a\right)^2}=9.4\sqrt{\left(1-a\right)^2}=36.\left|1-a\right|=36\left(1-a\right)=36-36a\) (vì a > 1)

B A H D C
\(\frac{HC}{HB}=\frac{9}{4}\)\(\Rightarrow\)\(\frac{HC}{9}=\frac{HB}{4}=k\)\(\Rightarrow\)\(HC=9k;\)\(HB=4k\)
Áp dụng hệ thức lượng ta có:
\(AH^2=HB.HC\)\(\Rightarrow\)\(AH^2=36k^2\)\(\Rightarrow\)\(AH=6k\)
Xét \(\Delta AHB\)và \(\Delta CHA\)có:
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với HAC)
suy ra: \(\Delta AHB~\Delta CHA\)(g.g)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{HB}{HA}=\frac{4k}{6k}=\frac{2}{3}\)
AD là phân giác tam giác ABC
=> \(\frac{DC}{DB}=\frac{AC}{AB}=\frac{3}{2}\)

\(A=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(\Leftrightarrow A^2=4+\sqrt{7}+4-\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}\)
\(\Leftrightarrow A^2=8-2\sqrt{16-7}=8-2\sqrt{9}=8-2\cdot3=8-6=2\)

(\(\sqrt{8-2\sqrt{15}}\)+ \(\sqrt{8+2\sqrt{15}}\)- \(2\sqrt{6-2\sqrt{5}}\))/2
= (\(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)+ \(\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)- \(2\sqrt{\left(\sqrt{5}-1\right)^2}\))/2
= ( \(\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}\)\(-2\sqrt{5}+2\)) / 2
= 2/2 = 1
bài của TuanMinhAms sai nha
\(A=\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
\(\Rightarrow\)\(\sqrt{2}A=\sqrt{8-2\sqrt{15}}+\sqrt{8+2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}-2\left(\sqrt{5}-1\right)=2\)
\(\Rightarrow\)\(A=\sqrt{2}\)
Giả sử tam giác ABC vuông tại A, có góc C = 600. AC = 25
A B C 60 25
\(cosC=cos60^0=\frac{AC}{BC}=\frac{1}{2}\)
\(\Rightarrow\)\(BC=2AC=50\)
\(tanC=tan60^0=\frac{AB}{AC}=\sqrt{3}\)
\(\Rightarrow\)\(AB=\sqrt{3}.AC=25\sqrt{3}\)
Hình vẽ:
60 25 A C B
Giả sử tam giác ABC vuông tại A có góc C bằng 600, AC bằng 25 (như hình vẽ)
cosC = cos600 = \(\frac{AC}{BC}\)= \(\frac{1}{2}\)
=> BC = 2AC = 50
tanC = tan600 = \(\frac{AB}{AC}\)= \(\sqrt{3}\)
=> AB = \(\sqrt{3}\).AC = 25 \(\sqrt{3}\)