K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

giúp mình với kết quả thôi cũng được .nhanh lên mình cần gấp.

4 tháng 8 2018

nhamh lên giúp mình

4 tháng 8 2018

\(M=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{\left(1+1+1\right)^2}{a+b+c+3}\)

\(\ge\frac{3^2}{1+3}=\frac{9}{4}\)

=>MinM=9/4 khi a=b=c=1/3

4 tháng 8 2018

sai rồi

4 tháng 8 2018

Áp dụng BĐT AM-GM với a;b;c > 0: \(abc\le\frac{\left(a+b+c\right)^3}{27}=\frac{1}{27}\)(Vì a+b+c=1)

Với a+b; b+c; c+a > 0 (Do a,b,c > 0): \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{8\left(a+b+c\right)^3}{27}=\frac{8}{27}\)

\(\Rightarrow M=abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{1}{27}.\frac{8}{27}=\frac{8}{729}\)

Vậy Max \(M=\frac{8}{729}\). Đẳng thức xảy ra <=> \(\hept{\begin{cases}a=b=c\\a+b=b+c=c+a\\a+b+c=1\end{cases}}\Leftrightarrow a=b=c=\frac{1}{3}.\)