K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2024

A B C D E

a/ 

Xét tg ABC có

\(\widehat{BAD}=\widehat{CAD}\left(gt\right)\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{12}{20}=\dfrac{3}{5}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy)

\(\Rightarrow\dfrac{BD}{BC}=\dfrac{3}{8}\Rightarrow BD=\dfrac{3BC}{8}=\dfrac{3.28}{8}=10,5cm\)

\(\Rightarrow DC=BC-BD=28-10,5=17,5cm\)

Ta có DE//AB \(\Rightarrow\dfrac{DC}{BC}=\dfrac{DE}{AB}\Rightarrow DE=\dfrac{DC.AB}{BC}=\dfrac{17,5.12}{28}=7,5cm\)

b/

2 tg ABD và tg ABC có chung đường cao từ A->BC nên

\(\dfrac{S_{ABD}}{S_{ABC}}=\dfrac{BD}{BC}=\dfrac{3}{8}\Rightarrow S_{ABD}=\dfrac{3.S_{ABC}}{8}=\dfrac{3S}{8}\)

\(\Rightarrow S_{ACD}=S_{ABC}-S_{ADC}=S-\dfrac{3S}{8}=\dfrac{5S}{8}\)

 

DT
2 tháng 1 2024

loading... 

DT
2 tháng 1 2024

loading... 

2 tháng 1 2024

Hình a

Do AD là tia phân giác của \(\widehat{BAC}\)

\(\Rightarrow\dfrac{AB}{BD}=\dfrac{AC}{CD}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BD+CD}=\dfrac{20+15}{25}=\dfrac{7}{5}\)

\(\dfrac{AC}{CD}=\dfrac{7}{5}\Rightarrow CD=\dfrac{5AC}{7}=\dfrac{75}{7}\)

DT
2 tháng 1 2024

loading... 

NV
1 tháng 1 2024

Đa thức đã cho không phân tích thành nhân tử được

2 tháng 1 2024

*Đoán nghiệm sử dụng tính chất của đa thức:

 Ta dễ dàng nhận thấy đa thức \(P\left(x\right)=x^3+4x^2-19x+24\) không có nghiệm là \(\pm1\).

 Giả sử \(P\left(x\right)\) có nghiệm hữu tỉ dạng \(\dfrac{p}{q}\left(p,q\inℤ\right)\), không mất tổng quát giả sử \(q>0\). Khi đó \(p|24\)\(q|1\) \(\Rightarrow q=1\).

 Khi đó do \(P\left(x\right)\) không có nghiệm là \(\pm1\) nên \(p\in\left\{\pm2,\pm3,\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)

 Thử lại, ta thấy không có số \(p\) nào thỏa mãn \(\dfrac{p}{q}\) là nghiệm của P(x). Vậy đa thức \(P\left(x\right)\) không có nghiệm hữu tỉ \(\Rightarrow\) \(P\left(x\right)\) không thể phân tích thành nhân tử.

 * Chú ý rằng chỉ khi \(degP\left(x\right)\le3\) hoặc \(degP\left(x\right)⋮̸2\) thì từ P(x) không có nghiệm hữu tỉ mới suy ra được P(x) không phân tích được thành nhân tử nhé. Nếu \(\left\{{}\begin{matrix}degP\left(x\right)\ge4\\degP\left(x\right)⋮2\end{matrix}\right.\) thì chưa chắc điều này đã đúng. VD: Đa thức \(Q\left(x\right)=x^4+4\) không có nghiệm hữu tỉ (nó thậm chí còn không có nghiệm thực) nhưng ta vẫn có thể phân tích thành nhân tử như sau:

 \(Q\left(x\right)=x^4+4=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

AH
Akai Haruma
Giáo viên
1 tháng 1 2024

Câu này thuộc môn Hóa học bạn vui lòng đăng trong mục môn Hóa học nhé.

AH
Akai Haruma
Giáo viên
2 tháng 1 2024

Lời giải:
a. $(x+y)-(x-y)=x+y-x+y=(x-x)+y+y=0+2y=2y$

b. $3x(5x^2-2x-1)-15x^3=15x^3-6x^2-3x-15x^3=-6x^2-3x$
c. $(5x-2y)(x^2-xy+1)+7x^2y=5x^3-5x^2y+5x-2x^2y+2xy^2-2y+7x^2y$

$=5x^3+(-5x^3y-2x^2y+7x^2y)+5x+2xy^2-2y$

$=5x^3+5x+2xy^2-2y$