Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H thuộc BC). Tính độ dài AH biết HB=2 cm, HC=8 cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+7+1 chia hết cho x+7
=> 1 chiết hết cho x+7
=> x+7 \(\inƯ\left(1\right)=\left\{\pm1\right\}\)
=>x\(\in\left\{-6,-8\right\}\)
(x+7+1) ⋮(x+7)
Vì (x+7) ⋮ (x+7) nên 1⋮ (x+7)
=> x+7ϵ Ư(1)={1;-1}
.x+7=1 .x+7=-1
x=1-7 x=(-1)-7
x=-6 x=-8
Vậy x ϵ{-6;-8}
A B C M D
a, xét tam giác AMD và tam giác CMB có : MD = MB (Gt)
AM = MC do M là trđ của AC (Gt)
^AMD = ^CMB (đối đỉnh)
=> tam giác AMD = tam giác CMB (c-g-c)
=> ^DAM = ^MCB mà 2 góc này slt
=> AD // BC (đl)
b, xét tam giác ABC và tam giác CDA có : AC chung
^DAM = ^MCB (câu a)
AD = BC do tam giác AMD = tam giác CMB (câu a)
=> tam giác ABC = tam giác CDA (c-g-c)
d, M là trung điểm của AC (gt)
=> BM là trung tuyến của tam giác ABC (Đn)
để BM _|_ AC
<=> tam giác ABC cân tại B (Đl)
hình chắc có rồi
tam giác BEH vuông tại E => BE^2 + HE^2 = BH^2 (pytago)
HE = DH (câu b)
=> BE^2 + HD^2 = BH^2 (1)
Tam giác BHC vuông tại H => BH^2 = BC^2 - HC^2 (pytago)
HC = HA (Câu a)
=> BH^2 = HC^2 - AH^2 và (1)
=> BE^2 + DH^2 = BC^2 - AH^2
a) Xét ΔABH và ΔCBH có :
AHBˆ=CHBˆ=90oAHB^=CHB^=90o
BA = BC ( ΔABC cân ở A )
Aˆ=CˆA^=C^ ( ΔABC cân ở B )
=> ΔABH = ΔCBH ( c.h-g.n )
=> HA = HC ( 2 cạnh tương ứng )
b) Do ΔABH = ΔCBH ( c/m a )
=> ABHˆ=CBHˆABH^=CBH^ ( 2 góc tương ứng )
hay DBHˆ=EBHˆDBH^=EBH^
+) ΔBDH và ΔBEH có :
BDHˆ=BDHˆ=90oBDH^=BDH^=90o
DBHˆ=EBHˆ(cmt)DBH^=EBH^(cmt)
BH là cạnh chung
=> ΔBDH = ΔBEH ( c.h-g.n )
=> HE = HD ( 2 cạnh tương ứng )
c) Do ΔBDH = ΔBEH ( c/m b )
=> BD = BE ( 2 cạnh tương ứng )
=> ΔBDE cân ở B
d) Do ΔBHE vuông ở E ; áp dụng định lí Pi-ta-go , ta có :
BE2 + HE2 = BH2
Mà HE = HD (c/m b )
=> BE2 + HD2 = BH2 (*)
+) Mặt khác , ΔBCH vuông ở H , áp dụng định lí Pi-ta-go , ta có :
BC2 = BH2 + HC2
=> BC2−HC2=BH2BC2−HC2=BH2
mà HC = HA ( c/m a )
=> BC2−HA2=BH2BC2−HA2=BH2 (**)
Từ (*) và (**)
=> BE2+HD2=BC2−HA2(=BH2)BE2+HD2=BC2−HA2(=BH2)
A B C H I M D
^IAC + ^IAB = 90
^HBA + ^BAH = 90
=> ^HBA = ^IAC
xét tam giác BHA và tam giác AIC có : ^BHA = ^AIC =90
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác BHA = tam giác AIC (ch-gn)
=> AH = CI
b, AM là trung tuyến của tam giác ABC vuông tại A
=> AM = BC/2 (đl)
M là trđ của BC (Gt) => MC = BC/2 = BM (tc)
=> AM = MC = BM
=> tam giác AMC cân tại M
=> ^MAC = ^MCA
mà ^MCA = ^MBA do tam giác ABC cân tại A (gt)
=> ^MAC = ^MBA
^HBA = ^IAC (câu a)
^MAC + ^IAM = ^IAC
^HBM + ^MBA = ^HBA
=> ^HBM = ^IAM
xét tam giác IAM và tam giác HBM có : AM = CM (cmt)
BH = AI do tam giác BHA = tam giác AIC (câu a)
=> tam giác IAM = tam giác HBM (c-g-c)
a) Xét tam giác vuông ABH và tam giác vuông ACI, có:
BA=AC ( tam giác ABC vuông cân )
Góc ICA = Góc BAH ( cùng phụ góc HAC )
Suy ra: tam giác ABH = tam giác ACI (ch-gn)
b)Ta có : góc ABH = góc IAC ( tam giác?= tam giác?)
Suy ra : góc ABC+ góc CBH = góc HAM + góc MAC (1)
Do tam giác vuông cân có AM là trung tuyến(gt)
Suy ra MA = BC/2 = MC
Suy ra tam giác MAC vuông cân ( MA vừa là trung tuyến, đường cao của tam giác vuông cân)
Suy ra góc MAC = góc MCA = 45 độ
Từ (1) suy ra góc ABC = góc MAC = 45 độ ( góc ABC =45 độ là do tam giác ABC vuông cân)
Vậy góc CBH = góc HAM
Xét tam giác AIM và tam giác BHM, có:
AM = BM (AM= BC/2, cmt)
Góc CBH = góc HAM ( cmt )
AI = BH ( tam giác ? = tam giác ?)
Suy ra : tam giác AIM = tam giác BHM (c-g-c)
Hehe XD
cho tam giác ABC cân tại A, kẻ AH vuông góc BC ( H thuộc BC )
a) CHỨNG MINH GÓC BAH = GÓC CEB
b) CHO AH= 3 cm , BC= 8 cm . TÍNH ĐỘ DÀI AC
c) KẺ HE VUÔNG GÓC AB , HD VUÔNG GÓC AC , CHỨNG MINH AE=AD
d) CHỨNG MINH ED SONG SONG BC
trả lời :
A B C H 2cm 8cm
Xét \(\Delta\)ABC vuông tại A , có:
AH là đường cao (H\(\in\)BC)
Ta lại có: BC = HB + HC = 2 + 8 = 10 (cm) (1)
\(\Delta\)ABC vuông tại A
=> BC là cạnh huyền (2)
Từ (1) và (2) => AH = \(\frac{1}{2}\)BC = 4(cm)